Schwinger Model with Quartic Interactions
(Dated: December 9, 2024)

I. QUARTIC FERMIONIC INTERACTIONS

Since quartic fermionic interactions are marginal in the Schwinger model, nothing prohibits us to include them in

the action. So, we can consider the terms:
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using the Dirac representation of the Gamma matrices,
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And together with ¥ = <Z)}:> , we have that
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If we define our previous operators in a normal ordered way (all daggered operators to the left), i.e.
contact terms of the form §(0)1 1), then
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Note that an interaction of the form (Uy#~3W)2? = —(¥~*¥)?2 and the interaction (U4>W¥)(¥V) is proportional to

the term A, (" 0)(TV).



II. QUARTIC INTERACTION ON THE LATTICE

If we perform the staggered representation of the fermions, i.e. we put 1, (x) on even sites and 14(z) on odd ones,
we have the identification, where a is the lattice spacing:

then the interacting Hamiltonians can be written as
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Now, performing the Jordan-Wigner transformation
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the first term is just an additive constant, so the interaction reads:
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Similarly, we can obtain the H) term:
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where we have used that (¢+)? = (67)% = 0. Neglecting the constants, the interaction reads:
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We calculate the Hg term
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ignoring the constant term, we have
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For the H, contribution, we have
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Since all the operators are related to each other (or are zero) when normal ordered, then the dimensionless Schwinger
model Hamiltonian with quartic interactions is:
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III. MASSLESS CASE

If we consider the Schwinger model with zero fermion mass and quartic interactions, then the continuum action
reads
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where we can see that the Schwinger mass gets redefined by
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Given that our effective theory is a free scalar one for every value of A > —m/2, then A is an exactly marginal
operator (it doesn’t run since there are no interactions in the low-energy action).

We can obtain a similar expression for small values of A, using the asymptotic expansion for PBC, studied in [1].
But, one has to be aware that in this approach the limits are taken as z > 1 and then N — oco. This is not the
correct order of taking the continuum extrapolation (the right procedure is first taking the thermodynamic limit and
then sending # — oo). However, in this case it appears to work. So, if we take z > 1, then the leading term in the
asymptotic expansion is obtained by neglecting the gauge fields. So, our Hamiltonian reduces to the one of the X X 7
model!
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the ground energy of this model in the interval —1 < g < 1 is
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where g = cos. The next term in the asymptotic expansion is obtained by neglecting all the gauge fields (via Gauss
law) but the average field:
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Thus, the Hamiltonian can be read as:
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with X being the Pauli matrix o® and in the second line we have expanded 6 around one of the minima of the potential
€0 COS \F say # = v N7. This gives,
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I Notice that, in comparison with [1], we have flipped the sign of x. In fact, one can check that the Hamiltonian W (z,\) has the same
spectrum as W(—xz, —\). This is justified by the action of the operator Pi = Z1Z3Zs5 ... (or similarly by the operator Po» = Z2Z47¢ .. .)
as follows: PiW (z, \)P1 = W(—z,—\). Note that P = P; P> commutes with the Hamiltonian.



Hence,
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We can see that for g = 0, we recover the well-known Schwinger mass 1/+/7.
Now, we can compare by plotting (15) and (18) as shown in Fig. 1. Both functions are in very good agreement in

the interval —1 < g < 1. If we use the same approach for the other intervals, the agreement is poor, as depicted in
Fig. 2. We can show that if we expand around g ~ 0, we get that v ~ 7 — g, and so (18) reduces to
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FIG. 1: Plots of equations (15) (red dashed) and (18) (blue line).
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FIG. 2: Extended version of Fig. 1, we can see that the asymptotic expansion works well for the interval —1 <« g < 1.
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