Schwinger Model with Quartic Interactions

(Dated: December 9, 2024)

I. QUARTIC FERMIONIC INTERACTIONS

Since quartic fermionic interactions are marginal in the Schwinger model, nothing prohibits us to include them in the action. So, we can consider the terms:

$$\delta S_g = g \int d^2 x \ (\bar{\Psi}\Psi)^2$$

$$\delta S_\lambda = \lambda \int d^2 x \ \bar{\Psi}\gamma^\mu \Psi \ \bar{\Psi}\gamma_\mu \Psi$$

$$\delta S_\beta = \beta \int d^2 x \ (\bar{\Psi}\gamma^3 \Psi)^2$$

$$\delta S_\kappa = i\kappa \int d^2 x \ A_\mu \bar{\Psi}\gamma^\mu \Psi \ \bar{\Psi}\Psi,$$
(1)

using the Dirac representation of the Gamma matrices,

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \gamma^1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad \gamma^3 = \gamma^0 \gamma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \{\gamma^\mu, \gamma^\nu\} = 2\eta^{\mu\nu}$$

And together with $\Psi = \begin{pmatrix} \psi_u \\ \psi_d \end{pmatrix}$, we have that

$$(\bar{\Psi}\Psi)^2 = \left[\begin{pmatrix} \psi_u^{\dagger} & \psi_d^{\dagger} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \psi_u \\ \psi_d \end{pmatrix} \right]^2 = (\psi_u^{\dagger}\psi_u)^2 + (\psi_d^{\dagger}\psi_d)^2 - (\psi_u^{\dagger}\psi_u)(\psi_d^{\dagger}\psi_d) - (\psi_d^{\dagger}\psi_d)(\psi_u^{\dagger}\psi_u)$$
(2)

$$(\bar{\Psi}\gamma^3\Psi)^2 = \left[\left(\psi_u^{\dagger} \ \psi_d^{\dagger} \right) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \psi_u \\ \psi_d \end{pmatrix} \right]^2 = (\psi_u^{\dagger}\psi_d)^2 + (\psi_d^{\dagger}\psi_u)^2 - (\psi_u^{\dagger}\psi_d)(\psi_d^{\dagger}\psi_u) - (\psi_d^{\dagger}\psi_u)(\psi_u^{\dagger}\psi_d)$$
(3)

$$(\bar{\Psi}\gamma^{\mu}\Psi)^{2} = \left[\left(\psi_{u}^{\dagger} \ \psi_{d}^{\dagger} \right) \left(\psi_{u}^{\dagger} \right) \right]^{2} - \left[\left(\psi_{u}^{\dagger} \ \psi_{d}^{\dagger} \right) \left(0 \ 1 \right) \left(\psi_{u}^{\dagger} \right) \right]^{2} = \left(\psi_{u}^{\dagger} \psi_{u} + \psi_{d}^{\dagger} \psi_{d} \right)^{2} - \left(\psi_{u}^{\dagger} \psi_{d} + \psi_{d}^{\dagger} \psi_{u} \right)^{2}$$

$$= \left(\psi_{u}^{\dagger} \psi_{u} \right)^{2} + \left(\psi_{d}^{\dagger} \psi_{d} \right)^{2} - \left(\psi_{u}^{\dagger} \psi_{d} \right)^{2} - \left(\psi_{d}^{\dagger} \psi_{u} \right)^{2} + \left(\psi_{u}^{\dagger} \psi_{u} \right) \left(\psi_{d}^{\dagger} \psi_{d} \right) + \left(\psi_{d}^{\dagger} \psi_{d} \right) \left(\psi_{u}^{\dagger} \psi_{u} \right) - \left(\psi_{d}^{\dagger} \psi_{u} \right) \left(\psi_{u}^{\dagger} \psi_{d} \right)$$

$$- \left(\psi_{u}^{\dagger} \psi_{d} \right) \left(\psi_{d}^{\dagger} \psi_{u} \right) - \left(\psi_{d}^{\dagger} \psi_{u} \right) \left(\psi_{u}^{\dagger} \psi_{d} \right)$$

$$(4)$$

And choosing the $A_0 = 0$ gauge fixing

$$A_{\mu}\bar{\Psi}\gamma^{\mu}\Psi\ \bar{\Psi}\Psi = A_{1}\left[\left(\psi_{u}^{\dagger}\ \psi_{d}^{\dagger}\right)\begin{pmatrix}0\ 1\\1\ 0\end{pmatrix}\begin{pmatrix}\psi_{u}\\\psi_{d}\end{pmatrix}\right]\left[\left(\psi_{u}^{\dagger}\ \psi_{d}^{\dagger}\right)\begin{pmatrix}1\ 0\\0\ -1\end{pmatrix}\begin{pmatrix}\psi_{u}\\\psi_{d}\end{pmatrix}\right]$$

$$= A_{1}\left[\left(\psi_{u}^{\dagger}\psi_{d}\right)(\psi_{u}^{\dagger}\psi_{u}) - (\psi_{u}^{\dagger}\psi_{d})(\psi_{d}^{\dagger}\psi_{d}) + (\psi_{d}^{\dagger}\psi_{u})(\psi_{u}^{\dagger}\psi_{u}) - (\psi_{d}^{\dagger}\psi_{u})(\psi_{d}^{\dagger}\psi_{d})\right]$$

$$(5)$$

If we define our previous operators in a normal ordered way (all daggered operators to the left), i.e. we avoid contact terms of the form $\delta(0)\psi^{\dagger}\psi$, then

$$(\bar{\Psi}\Psi)^2 = -(\bar{\Psi}\gamma^3\Psi)^2 = -\frac{1}{2}(\bar{\Psi}\gamma^\mu\Psi)^2 = -\psi_u^\dagger\psi_d^\dagger\psi_u\psi_d - \psi_d^\dagger\psi_u^\dagger\psi_d\psi_u$$

$$A_\mu\bar{\Psi}\gamma^\mu\Psi\ \bar{\Psi}\Psi = 0 \tag{6}$$

Note that an interaction of the form $(\bar{\Psi}\gamma^{\mu}\gamma^{3}\Psi)^{2} = -(\bar{\Psi}\gamma^{\mu}\Psi)^{2}$ and the interaction $(\bar{\Psi}\gamma^{3}\Psi)(\bar{\Psi}\Psi)$ is proportional to the term $A_{\mu}(\bar{\Psi}\gamma^{\mu}\Psi)(\bar{\Psi}\Psi)$.

QUARTIC INTERACTION ON THE LATTICE

If we perform the staggered representation of the fermions, i.e. we put $\psi_u(x)$ on even sites and $\psi_d(x)$ on odd ones, we have the identification, where a is the lattice spacing:

$$\psi_u = \frac{1}{\sqrt{a}} c_n, \quad \text{n-even}$$

$$\psi_d = \frac{1}{\sqrt{a}} c_n, \quad \text{n-odd},$$
(7)

then the interacting Hamiltonians can be written as

$$\begin{split} H_g &= -\frac{g}{a} \sum_{n - \text{odd}} \left[(c_{n+1}^\dagger c_{n+1})^2 + (c_n^\dagger c_n)^2 - (c_{n-1}^\dagger c_{n-1})(c_n^\dagger c_n) - (c_n^\dagger c_n)(c_{n+1}^\dagger c_{n+1}) \right] \\ &= -\frac{g}{a} \sum_{n} \left[(c_n^\dagger c_n)^2 - (c_n^\dagger c_n)(c_{n+1}^\dagger c_{n+1}) \right] \end{split}$$

Now, performing the Jordan-Wigner transformation

$$c_n = \prod_{\ell < n} (i\sigma_\ell^z) \, \sigma_n^-, \qquad c_n^{\dagger} = \prod_{\ell < n} (-i\sigma_\ell^z) \, \sigma_n^+, \tag{8}$$

we get

$$H_g = -\frac{g}{a} \sum_n \left[\frac{(1+\sigma_n^z)}{2} - \frac{(1+\sigma_n^z)(1+\sigma_{n+1}^z)}{4} \right]$$
$$= -\frac{g}{4a} \left[N - \sum_n \sigma_n^z \sigma_{n+1}^z \right]$$

the first term is just an additive constant, so the interaction reads:

$$H_g = \frac{g}{4a} \sum_n \sigma_n^z \sigma_{n+1}^z, \quad \text{or}$$

$$W_g = \frac{2}{e^2 a} H_g = \frac{g \ x}{2} \sum_n \sigma_n^z \sigma_{n+1}^z.$$
(9)

where $x = \frac{1}{e^2 a^2}.$ Similarly, we can obtain the H_λ term:

$$\begin{split} H_{\lambda} &= -\frac{\lambda}{a} \sum_{n - \text{odd}} \left[(c_{n+1}^{\dagger} c_{n+1})^2 + (c_{n}^{\dagger} c_{n})^2 - (c_{n-1}^{\dagger} c_{n})^2 - (c_{n}^{\dagger} c_{n+1})^2 + (c_{n-1}^{\dagger} c_{n-1})(c_{n}^{\dagger} c_{n}) + \right. \\ &\quad + (c_{n}^{\dagger} c_{n})(c_{n+1}^{\dagger} c_{n+1}) - (c_{n-1}^{\dagger} c_{n})(c_{n}^{\dagger} c_{n-1}) - (c_{n}^{\dagger} c_{n+1})(c_{n+1}^{\dagger} c_{n}) \right] \\ &= -\frac{\lambda}{a} \sum_{n} \left[(c_{n}^{\dagger} c_{n})^2 - (c_{n}^{\dagger} c_{n+1})^2 + (c_{n}^{\dagger} c_{n})(c_{n+1}^{\dagger} c_{n+1}) - (c_{n}^{\dagger} c_{n+1})(c_{n+1}^{\dagger} c_{n}) \right] \\ &= -\frac{\lambda}{a} \sum_{n} \left[\frac{(1 + \sigma_{n}^{z})}{2} + (\sigma_{n}^{\dagger} e^{i\theta_{n}} \sigma_{n+1}^{-})^2 + \frac{(1 + \sigma_{n}^{z})(1 + \sigma_{n+1}^{z})}{4} - \sigma_{n}^{\dagger} \sigma_{n}^{-} \sigma_{n+1}^{\dagger} \sigma_{n+1}^{-} \right] \\ &= -\frac{\lambda}{a} \sum_{n} \left[\frac{(1 + \sigma_{n}^{z})}{2} + \frac{(1 + \sigma_{n}^{z})(1 + \sigma_{n+1}^{z})}{4} - \frac{(1 + \sigma_{n}^{z})(1 - \sigma_{n+1}^{z})}{4} \right] \\ &= -\frac{\lambda}{a} \sum_{n} \left[\frac{(1 + \sigma_{n}^{z})(1 + \sigma_{n+1}^{z})}{2} \right] \\ &= -\frac{\lambda}{a} \left[N + 4Q + (1 - (-1)^{N}) + \sum_{n} \sigma_{n}^{z} \sigma_{n+1}^{z} \right], \qquad Q = \sum_{n} \frac{\sigma_{n}^{z} + (-1)^{n}}{2}, \end{split}$$

where we have used that $(\sigma^+)^2 = (\sigma^-)^2 = 0$. Neglecting the constants, the interaction reads:

$$H_{\lambda} = -\frac{\lambda}{2a} \sum_{n} \sigma_{n}^{z} \sigma_{n+1}^{z},$$

$$W_{\lambda} = \frac{2}{e^{2}a} H_{\lambda} = -\lambda x \sum_{n} \sigma_{n}^{z} \sigma_{n+1}^{z}.$$
(10)

We calculate the H_{β} term

$$H_{\beta} = -\frac{\beta}{a} \sum_{n-\text{odd}} \left[(c_n^{\dagger} c_{n+1})^2 + (c_{n-1}^{\dagger} c_n)^2 - (c_{n-1}^{\dagger} c_n)(c_n^{\dagger} c_{n-1}) - (c_n^{\dagger} c_{n+1})(c_{n+1}^{\dagger} c_n) \right]$$

$$= -\frac{\beta}{a} \sum_{n} \left[(c_n^{\dagger} c_{n+1})^2 - (c_n^{\dagger} c_{n+1})(c_{n+1}^{\dagger} c_n) \right]$$

$$= -\frac{\beta}{a} \sum_{n} \left[(\sigma_n^{\dagger} e^{i\theta_n} \sigma_{n+1}^-)^2 - \sigma_n^{\dagger} \sigma_{n+1}^- \sigma_{n+1}^+ \sigma_n^- \right]$$

$$= \frac{\beta}{a} \sum_{n} \left[\frac{(1 + \sigma_n^z)(1 - \sigma_{n+1}^z)}{4} \right]$$

$$= \frac{\beta}{4a} \left[N - \sum_{n} \sigma_n^z \sigma_{n+1}^z \right],$$

ignoring the constant term, we have

$$H_{\beta} = -\frac{\beta}{4a} \sum_{n} \sigma_{n}^{z} \sigma_{n+1}^{z}, \quad \text{or}$$

$$W_{\beta} = \frac{2}{e^{2}a} H_{\beta} = -\frac{\beta}{2} \sum_{n} \sigma_{n}^{z} \sigma_{n+1}^{z}.$$
(11)

For the H_{κ} contribution, we have

$$\begin{split} H_{\kappa} &= -i\frac{\kappa}{a} \sum_{n - \mathrm{odd}} \left[(c_{n}^{\dagger} e^{i\theta_{n}} c_{n+1})(c_{n+1}^{\dagger} c_{n+1}) - (c_{n}^{\dagger} e^{i\theta_{n}} c_{n+1})(c_{n}^{\dagger} c_{n}) + \right. \\ & \left. + (c_{n+1}^{\dagger} e^{-i\theta_{n}} c_{n})(c_{n+1}^{\dagger} c_{n+1}) - (c_{n+1}^{\dagger} e^{-i\theta_{n}} c_{n})(c_{n}^{\dagger} c_{n}) \right] \\ &= -i\frac{\kappa}{2a} \sum_{n} \left[(c_{n}^{\dagger} e^{i\theta_{n}} c_{n+1})(c_{n+1}^{\dagger} c_{n+1}) - (c_{n}^{\dagger} e^{i\theta_{n}} c_{n+1})(c_{n}^{\dagger} c_{n}) + c.c. \right] \\ &= -\frac{\kappa}{2a} \sum_{n} \left[\left(\sigma_{n}^{\dagger} e^{i\theta_{n}} \sigma_{n+1}^{-} \right) \frac{(1 + \sigma_{n+1}^{z})}{2} - \left(\sigma_{n}^{\dagger} e^{i\theta_{n}} \sigma_{n+1}^{-} \right) \frac{(1 + \sigma_{n}^{z})}{2} + c.c. \right] \\ &= -\frac{\kappa}{2a} \sum_{n} \left[\frac{1}{2} (\sigma_{n}^{\dagger} e^{i\theta_{n}} \sigma_{n+1}^{-} \sigma_{n+1}^{z}) - \frac{1}{2} (\sigma_{n}^{\dagger} \sigma_{n}^{z} e^{i\theta_{n}} \sigma_{n+1}^{-}) + c.c. \right] \\ &= -\frac{\kappa}{2a} \sum_{n} \left[\sigma_{n}^{\dagger} e^{i\theta_{n}} \sigma_{n+1}^{-} + c.c. \right], \end{split}$$

where we have used that $\sigma^+\sigma^z=-\sigma^+$ and $\sigma^-\sigma^z=\sigma^-$. Therefore,

$$H_{\kappa} = -\frac{\kappa}{2a} \sum_{n} \left[\sigma_{n}^{+} e^{i\theta_{n}} \sigma_{n+1}^{-} + c.c. \right],$$

$$W_{\kappa} = \frac{2}{e^{2}a} H_{\kappa} = -\kappa x \sum_{n} \left[\sigma_{n}^{+} e^{i\theta_{n}} \sigma_{n+1}^{-} + c.c. \right].$$
(12)

Since all the operators are related to each other (or are zero) when normal ordered, then the dimensionless Schwinger model Hamiltonian with quartic interactions is:

$$W = \sum_{n} \left[L_n + \frac{\theta}{2\pi} \right]^2 + \frac{\mu}{2} \sum_{n} (-1)^n \sigma_n^z + x \sum_{n} \left[\sigma_n^+ e^{i\theta_n} \sigma_{n+1}^- + \text{c.c.} - \lambda \sigma_n^z \sigma_{n+1}^z \right], \tag{13}$$

where $\mu = \frac{2m_{latt}}{ae^2}$ and $m_{latt} = m - \frac{e^2a}{8}$.

III. MASSLESS CASE

If we consider the Schwinger model with zero fermion mass and quartic interactions, then the continuum action reads

$$S = \int d^{2}x \left(\frac{1}{2} F_{01}^{2} + e \frac{\theta}{2\pi} F_{01} + i \bar{\Psi} \gamma^{\mu} D_{\mu} \Psi + \lambda \bar{\Psi} \gamma^{\mu} \Psi \bar{\Psi} \gamma_{\mu} \Psi \right)$$

$$= \int d^{2}x \left(\frac{1}{2} F_{01}^{2} + e \frac{\theta}{2\pi} F_{01} + i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi + e A_{\mu} j_{V}^{\mu} + \lambda \bar{\Psi} \gamma^{\mu} \Psi \bar{\Psi} \gamma_{\mu} \Psi \right)$$

$$= \int d^{2}x \left(\frac{1}{2} F_{01}^{2} + e \frac{\theta}{2\pi} F_{01} + \frac{1}{8\pi} (\partial_{\mu} \phi)^{2} + \frac{e}{2\pi} A_{\mu} \epsilon^{\mu\nu} \partial_{\nu} \phi + \frac{\lambda}{4\pi^{2}} (\partial^{\mu} \phi)^{2} \right)$$

$$= \int d^{2}x \left(\frac{1}{2} F_{01}^{2} + e \frac{(\phi + \theta)}{2\pi} F_{01} + \frac{1}{8\pi} \left(1 + \frac{2\lambda}{\pi} \right) (\partial_{\mu} \phi)^{2} \right)$$

$$= \int d^{2}x \left(\frac{1}{8\pi} \left(1 + \frac{2\lambda}{\pi} \right) (\partial_{\mu} \phi)^{2} - \frac{e^{2}}{8\pi^{2}} (\phi + \theta)^{2} \right)$$

$$= \int d^{2}x \left(\frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{e^{2}}{2\pi} \left(1 + \frac{2\lambda}{\pi} \right)^{-1} \phi^{2} \right), \tag{14}$$

where we can see that the Schwinger mass gets redefined by

$$M_S = \frac{e}{\sqrt{\pi + 2\lambda}} = \frac{e}{\sqrt{\pi - g}}.$$
 (15)

Given that our effective theory is a free scalar one for every value of $\lambda > -\pi/2$, then λ is an exactly marginal operator (it doesn't run since there are no interactions in the low-energy action).

We can obtain a similar expression for small values of λ , using the asymptotic expansion for PBC, studied in [1]. But, one has to be aware that in this approach the limits are taken as $x \gg 1$ and then $N \to \infty$. This is not the correct order of taking the continuum extrapolation (the right procedure is first taking the thermodynamic limit and then sending $x \to \infty$). However, in this case it appears to work. So, if we take $x \gg 1$, then the leading term in the asymptotic expansion is obtained by neglecting the gauge fields. So, our Hamiltonian reduces to the one of the XXZ model¹

$$W \sim x \sum_{n} \left[\sigma_{n}^{+} \sigma_{n+1}^{-} + \text{c.c.} - \lambda \sigma_{n}^{z} \sigma_{n+1}^{z} \right]$$

$$= \frac{x}{2} \sum_{n} \left[X_{n} X_{n+1} + Y_{n} Y_{n+1} - 2\lambda Z_{n} Z_{n+1} \right]$$

$$= \frac{x}{2} \sum_{n} \left[X_{n} X_{n+1} + Y_{n} Y_{n+1} + g Z_{n} Z_{n+1} \right], \tag{16}$$

the ground energy of this model in the interval -1 < g < 1 is

$$\frac{\epsilon_0}{N} = 2x \left[-\frac{g}{4} + \frac{\sqrt{1-g^2}}{2} \int_{-\infty}^{\infty} dw \frac{\sinh((\pi-\gamma)w)}{\sinh(\pi w) \cosh(\gamma w)} \right],\tag{17}$$

where $g = \cos \gamma$. The next term in the asymptotic expansion is obtained by neglecting all the gauge fields (via Gauss law) but the average field:

$$\theta = \sum_{n=1}^{N} \frac{\theta(n)}{\sqrt{N}}.$$

Thus, the Hamiltonian can be read as:

$$W \simeq -\frac{\partial^2}{\partial \theta^2} + \epsilon_0 \cos \frac{\theta}{\sqrt{N}} X$$
$$\simeq -\frac{\partial^2}{\partial \theta^2} - \epsilon_0 \left(1 - \frac{1}{2} \left(\frac{\theta}{\sqrt{N}} \right)^2 \right) X,$$

with X being the Pauli matrix σ^x and in the second line we have expanded θ around one of the minima of the potential $\epsilon_0 \cos \frac{\theta}{\sqrt{N}}$, say $\theta = \sqrt{N}\pi$. This gives,

$$f_0 \sim Ne^{-\frac{\theta^2}{2\sqrt{N}}\sqrt{\epsilon_0/2}} \begin{pmatrix} 1\\1 \end{pmatrix} \longrightarrow E_0 = -\epsilon_0 + \sqrt{\frac{\epsilon_0}{2N}}$$
$$f_1 \sim N\theta e^{-\frac{\theta^2}{2\sqrt{N}}\sqrt{\epsilon_0/2}} \begin{pmatrix} 1\\1 \end{pmatrix} \longrightarrow E_1 = -\epsilon_0 + 3\sqrt{\frac{\epsilon_0}{2N}}.$$

¹ Notice that, in comparison with [1], we have flipped the sign of x. In fact, one can check that the Hamiltonian $W(x,\lambda)$ has the same spectrum as $W(-x,-\lambda)$. This is justified by the action of the operator $P_1=Z_1Z_3Z_5...$ (or similarly by the operator $P_2=Z_2Z_4Z_6...$) as follows: $P_1W(x,\lambda)P_1=W(-x,-\lambda)$. Note that $P=P_1P_2$ commutes with the Hamiltonian.

Hence,

$$\frac{E_1 - E_0}{2e\sqrt{x}} = \sqrt{-\frac{g}{4} + \frac{\sqrt{1 - g^2}}{2}} \int_{-\infty}^{\infty} dw \frac{\sinh((\pi - \gamma)w)}{\sinh(\pi w)\cosh(\gamma w)}.$$
 (18)

We can see that for g = 0, we recover the well-known Schwinger mass $1/\sqrt{\pi}$.

Now, we can compare by plotting (15) and (18) as shown in Fig. 1. Both functions are in very good agreement in the interval $-1 \ll g \ll 1$. If we use the same approach for the other intervals, the agreement is poor, as depicted in Fig. 2. We can show that if we expand around $g \simeq 0$, we get that $\gamma \simeq \frac{\pi}{2} - g$, and so (18) reduces to

$$\frac{E_1 - E_0}{2e\sqrt{x}} \simeq \sqrt{-\frac{g}{4} + \frac{1}{2} \int_{-\infty}^{\infty} dw \frac{\sinh\frac{\pi}{2}w + gw \cosh\frac{\pi}{2}w}{\sinh(\pi w) \left(\cosh\frac{\pi}{2}w - gw \sinh\frac{\pi}{2}w\right)}}$$

$$\simeq \sqrt{-\frac{g}{4} + \frac{1}{2} \int_{-\infty}^{\infty} dw \left[\frac{1}{2\cosh^2\frac{\pi}{2}w} + gw \left(\frac{1}{\sinh\pi w} + \frac{\sinh\frac{\pi}{2}w}{2\cosh^3\frac{\pi}{2}w}\right)\right]}$$

$$\simeq \sqrt{\frac{1}{\pi} + \frac{g}{\pi^2}}$$

$$\simeq \frac{1}{\sqrt{\pi}} \left(1 + \frac{g}{2\pi}\right) \simeq \frac{M_S}{e}.$$

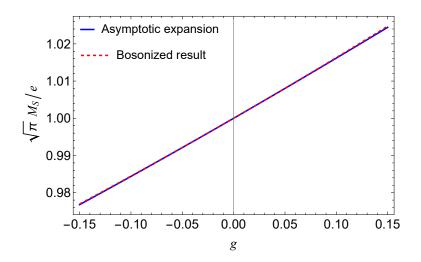


FIG. 1: Plots of equations (15) (red dashed) and (18) (blue line).

[1] C. J. Hamer, J. B. Kogut, D. P. Crewther, and M. M. Mazzolini, Nucl. Phys. B 208, 413 (1982).

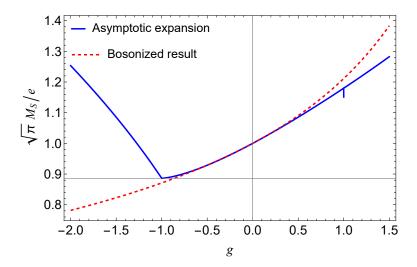


FIG. 2: Extended version of Fig. 1, we can see that the asymptotic expansion works well for the interval $-1 \ll g \ll 1$.