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I. QUARTIC FERMIONIC INTERACTIONS

Since quartic fermionic interactions are marginal in the Schwinger model, nothing prohibits us to include them in
the action. So, we can consider the terms:

δSg = g

∫
d2x (Ψ̄Ψ)2

δSλ = λ

∫
d2x Ψ̄γµΨ Ψ̄γµΨ

δSβ = β

∫
d2x (Ψ̄γ3Ψ)2

δSκ = iκ

∫
d2x AµΨ̄γ

µΨ Ψ̄Ψ, (1)

using the Dirac representation of the Gamma matrices,

γ0 =

(
1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
, γ3 = γ0γ1 =

(
0 1
1 0

)
, {γµ, γν} = 2ηµν

And together with Ψ =

(
ψu

ψd

)
, we have that

(Ψ̄Ψ)2 =

[(
ψ†
u ψ†

d

)(1 0
0 −1

)(
ψu

ψd

)]2
= (ψ†

uψu)
2 + (ψ†

dψd)
2 − (ψ†

uψu)(ψ
†
dψd)− (ψ†

dψd)(ψ
†
uψu) (2)

(Ψ̄γ3Ψ)2 =

[(
ψ†
u ψ†

d

)( 0 1
−1 0

)(
ψu

ψd

)]2
= (ψ†

uψd)
2 + (ψ†

dψu)
2 − (ψ†

uψd)(ψ
†
dψu)− (ψ†

dψu)(ψ
†
uψd) (3)

(Ψ̄γµΨ)2 =

[(
ψ†
u ψ†

d

)(ψu

ψd

)]2
−
[(
ψ†
u ψ†

d

)(0 1
1 0

)(
ψu

ψd

)]2
= (ψ†

uψu + ψ†
dψd)

2 − (ψ†
uψd + ψ†

dψu)
2

= (ψ†
uψu)

2 + (ψ†
dψd)

2 − (ψ†
uψd)

2 − (ψ†
dψu)

2 + (ψ†
uψu)(ψ

†
dψd) + (ψ†

dψd)(ψ
†
uψu)−

− (ψ†
uψd)(ψ

†
dψu)− (ψ†

dψu)(ψ
†
uψd) (4)

And choosing the A0 = 0 gauge fixing,

AµΨ̄γ
µΨ Ψ̄Ψ = A1

[(
ψ†
u ψ†

d

)(0 1
1 0

)(
ψu

ψd

)][(
ψ†
u ψ†

d

)(1 0
0 −1

)(
ψu

ψd

)]
= A1

[
(ψ†

uψd)(ψ
†
uψu)− (ψ†

uψd)(ψ
†
dψd) + (ψ†

dψu)(ψ
†
uψu)− (ψ†

dψu)(ψ
†
dψd)

]
(5)

If we define our previous operators in a normal ordered way (all daggered operators to the left), i.e. we avoid
contact terms of the form δ(0)ψ†ψ, then

(Ψ̄Ψ)2 = −(Ψ̄γ3Ψ)2 = −1

2
(Ψ̄γµΨ)2 = −ψ†

uψ
†
dψuψd − ψ†

dψ
†
uψdψu

AµΨ̄γ
µΨ Ψ̄Ψ = 0 (6)

Note that an interaction of the form (Ψ̄γµγ3Ψ)2 = −(Ψ̄γµΨ)2 and the interaction (Ψ̄γ3Ψ)(Ψ̄Ψ) is proportional to
the term Aµ(Ψ̄γ

µΨ)(Ψ̄Ψ).
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II. QUARTIC INTERACTION ON THE LATTICE

If we perform the staggered representation of the fermions, i.e. we put ψu(x) on even sites and ψd(x) on odd ones,
we have the identification, where a is the lattice spacing:

ψu =
1√
a
cn, n-even

ψd =
1√
a
cn, n-odd, (7)

then the interacting Hamiltonians can be written as

Hg = −g
a

∑
n−odd

[
(c†n+1cn+1)

2 + (c†ncn)
2 − (c†n−1cn−1)(c

†
ncn)− (c†ncn)(c

†
n+1cn+1)

]
= −g

a

∑
n

[
(c†ncn)

2 − (c†ncn)(c
†
n+1cn+1)

]
Now, performing the Jordan-Wigner transformation

cn =
∏
ℓ<n

(iσz
ℓ )σ

−
n , c†n =

∏
ℓ<n

(−iσz
ℓ )σ

+
n , (8)

we get

Hg = −g
a

∑
n

[
(1 + σz

n)

2
−

(1 + σz
n)(1 + σz

n+1)

4

]

= − g

4a

[
N −

∑
n

σz
nσ

z
n+1

]

the first term is just an additive constant, so the interaction reads:

Hg =
g

4a

∑
n

σz
nσ

z
n+1, or

Wg =
2

e2a
Hg =

g x

2

∑
n

σz
nσ

z
n+1 . (9)

where x = 1
e2a2 .

Similarly, we can obtain the Hλ term:
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Hλ = −λ
a

∑
n−odd

[
(c†n+1cn+1)

2 + (c†ncn)
2 − (c†n−1cn)

2 − (c†ncn+1)
2 + (c†n−1cn−1)(c

†
ncn)+

+(c†ncn)(c
†
n+1cn+1)− (c†n−1cn)(c

†
ncn−1)− (c†ncn+1)(c

†
n+1cn)

]
= −λ

a

∑
n

[
(c†ncn)

2 − (c†ncn+1)
2 + (c†ncn)(c

†
n+1cn+1)− (c†ncn+1)(c

†
n+1cn)

]
= −λ

a

∑
n

[
(1 + σz

n)

2
+ (σ+

n e
iθnσ−

n+1)
2 +

(1 + σz
n)(1 + σz

n+1)

4
− σ+

n σ
−
n σ

+
n+1σ

−
n+1

]
= −λ

a

∑
n

[
(1 + σz

n)

2
+

(1 + σz
n)(1 + σz

n+1)

4
−

(1 + σz
n)(1− σz

n+1)

4

]
= −λ

a

∑
n

[
(1 + σz

n)(1 + σz
n+1)

2

]

= − λ

2a

[
N + 4Q+ (1− (−1)N ) +

∑
n

σz
nσ

z
n+1

]
, Q =

∑
n

σz
n + (−1)n

2
,

where we have used that (σ+)2 = (σ−)2 = 0. Neglecting the constants, the interaction reads:

Hλ = − λ

2a

∑
n

σz
nσ

z
n+1,

Wλ =
2

e2a
Hλ = −λ x

∑
n

σz
nσ

z
n+1 . (10)

We calculate the Hβ term

Hβ = −β
a

∑
n−odd

[
(c†ncn+1)

2 + (c†n−1cn)
2 − (c†n−1cn)(c

†
ncn−1)− (c†ncn+1)(c

†
n+1cn)

]
= −β

a

∑
n

[
(c†ncn+1)

2 − (c†ncn+1)(c
†
n+1cn)

]
= −β

a

∑
n

[
(σ+

n e
iθnσ−

n+1)
2 − σ+

n σ
−
n+1σ

+
n+1σ

−
n

]
=
β

a

∑
n

[
(1 + σz

n)(1− σz
n+1)

4

]

=
β

4a

[
N −

∑
n

σz
nσ

z
n+1

]
,

ignoring the constant term, we have

Hβ = − β

4a

∑
n

σz
nσ

z
n+1, or

Wβ =
2

e2a
Hβ = −β x

2

∑
n

σz
nσ

z
n+1 . (11)

For the Hκ contribution, we have
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Hκ = −iκ
a

∑
n−odd

[
(c†ne

iθncn+1)(c
†
n+1cn+1)− (c†ne

iθncn+1)(c
†
ncn)+

+(c†n+1e
−iθncn)(c

†
n+1cn+1)− (c†n+1e

−iθncn)(c
†
ncn)

]
= −i κ

2a

∑
n

[
(c†ne

iθncn+1)(c
†
n+1cn+1)− (c†ne

iθncn+1)(c
†
ncn) + c.c.

]
= − κ

2a

∑
n

[(
σ+
n e

iθnσ−
n+1

) (1 + σz
n+1)

2
−
(
σ+
n e

iθnσ−
n+1

) (1 + σz
n)

2
+ c.c.

]
= − κ

2a

∑
n

[
1

2
(σ+

n e
iθnσ−

n+1σ
z
n+1)−

1

2
(σ+

n σ
z
ne

iθnσ−
n+1) + c.c.

]
= − κ

2a

∑
n

[
σ+
n e

iθnσ−
n+1 + c.c.

]
,

where we have used that σ+σz = −σ+ and σ−σz = σ−. Therefore,

Hκ = − κ

2a

∑
n

[
σ+
n e

iθnσ−
n+1 + c.c.

]
,

Wκ =
2

e2a
Hκ = −κ x

∑
n

[
σ+
n e

iθnσ−
n+1 + c.c.

]
. (12)

Since all the operators are related to each other (or are zero) when normal ordered, then the dimensionless Schwinger
model Hamiltonian with quartic interactions is:

W =
∑
n

[
Ln +

θ

2π

]2
+
µ

2

∑
n

(−1)nσz
n + x

∑
n

[
σ+
n e

iθnσ−
n+1 + c.c.− λσz

nσ
z
n+1

]
, (13)

where µ = 2mlatt

ae2 and mlatt = m− e2a
8 .

III. MASSLESS CASE

If we consider the Schwinger model with zero fermion mass and quartic interactions, then the continuum action
reads

S =

∫
d2x

(
1

2
F 2
01 + e

θ

2π
F01 + iΨ̄γµDµΨ+ λΨ̄γµΨ Ψ̄γµΨ

)
=

∫
d2x

(
1

2
F 2
01 + e

θ

2π
F01 + iΨ̄γµ∂µΨ+ eAµj

µ
V + λΨ̄γµΨ Ψ̄γµΨ

)
=

∫
d2x

(
1

2
F 2
01 + e

θ

2π
F01 +

1

8π
(∂µϕ)

2 +
e

2π
Aµϵ

µν∂νϕ+
λ

4π2
(∂µϕ)2

)
=

∫
d2x

(
1

2
F 2
01 + e

(ϕ+ θ)

2π
F01 +

1

8π

(
1 +

2λ

π

)
(∂µϕ)

2

)
=

∫
d2x

(
1

8π

(
1 +

2λ

π

)
(∂µϕ)

2 − e2

8π2
(ϕ+ θ)2

)
=

∫
d2x

(
1

2
(∂µϕ)

2 − e2

2π

(
1 +

2λ

π

)−1

ϕ2

)
, (14)

where we can see that the Schwinger mass gets redefined by
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MS =
e√

π + 2λ
=

e√
π − g

. (15)

Given that our effective theory is a free scalar one for every value of λ > −π/2, then λ is an exactly marginal
operator (it doesn’t run since there are no interactions in the low-energy action).

We can obtain a similar expression for small values of λ, using the asymptotic expansion for PBC, studied in [1].
But, one has to be aware that in this approach the limits are taken as x ≫ 1 and then N → ∞. This is not the
correct order of taking the continuum extrapolation (the right procedure is first taking the thermodynamic limit and
then sending x → ∞). However, in this case it appears to work. So, if we take x ≫ 1, then the leading term in the
asymptotic expansion is obtained by neglecting the gauge fields. So, our Hamiltonian reduces to the one of the XXZ
model1

W ∼ x
∑
n

[
σ+
n σ

−
n+1 + c.c.− λσz

nσ
z
n+1

]
=
x

2

∑
n

[XnXn+1 + YnYn+1 − 2λZnZn+1]

=
x

2

∑
n

[XnXn+1 + YnYn+1 + gZnZn+1] , (16)

the ground energy of this model in the interval −1 < g < 1 is

ϵ0
N

= 2x

[
−g
4
+

√
1− g2

2

∫ ∞

−∞
dw

sinh ((π − γ)w)

sinh (πw) cosh (γw)

]
, (17)

where g = cos γ. The next term in the asymptotic expansion is obtained by neglecting all the gauge fields (via Gauss
law) but the average field:

θ =

N∑
n=1

θ(n)√
N
.

Thus, the Hamiltonian can be read as:

W ≃ − ∂2

∂θ2
+ ϵ0 cos

θ√
N
X

≃ − ∂2

∂θ2
− ϵ0

(
1− 1

2

(
θ√
N

)2
)
X,

with X being the Pauli matrix σx and in the second line we have expanded θ around one of the minima of the potential
ϵ0 cos

θ√
N
, say θ =

√
Nπ. This gives,

f0 ∼ Ne
− θ2

2
√

N

√
ϵ0/2

(
1
1

)
−→ E0 = −ϵ0 +

√
ϵ0
2N

f1 ∼ Nθe
− θ2

2
√

N

√
ϵ0/2

(
1
1

)
−→ E1 = −ϵ0 + 3

√
ϵ0
2N

.

1 Notice that, in comparison with [1], we have flipped the sign of x. In fact, one can check that the Hamiltonian W (x, λ) has the same
spectrum as W (−x,−λ). This is justified by the action of the operator P1 = Z1Z3Z5 . . . (or similarly by the operator P2 = Z2Z4Z6 . . . )
as follows: P1W (x, λ)P1 = W (−x,−λ). Note that P = P1P2 commutes with the Hamiltonian.
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Hence,

E1 − E0

2e
√
x

=

√
−g
4
+

√
1− g2

2

∫ ∞

−∞
dw

sinh ((π − γ)w)

sinh (πw) cosh (γw)
. (18)

We can see that for g = 0, we recover the well-known Schwinger mass 1/
√
π.

Now, we can compare by plotting (15) and (18) as shown in Fig. 1. Both functions are in very good agreement in
the interval −1 ≪ g ≪ 1. If we use the same approach for the other intervals, the agreement is poor, as depicted in
Fig. 2. We can show that if we expand around g ≃ 0, we get that γ ≃ π

2 − g, and so (18) reduces to

E1 − E0

2e
√
x

≃

√
−g
4
+

1

2

∫ ∞

−∞
dw

sinh π
2w + gw cosh π

2w

sinh (πw)
(
cosh π

2w − gw sinh π
2w
)

≃

√√√√−g
4
+

1

2

∫ ∞

−∞
dw

[
1

2 cosh2 π
2w

+ gw

(
1

sinhπw
+

sinh π
2w

2 cosh3 π
2w

)]

≃
√

1

π
+

g

π2

≃ 1√
π

(
1 +

g

2π

)
≃ MS

e
.

Asymptotic expansion

Bosonized result
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FIG. 1: Plots of equations (15) (red dashed) and (18) (blue line).
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Asymptotic expansion

Bosonized result
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FIG. 2: Extended version of Fig. 1, we can see that the asymptotic expansion works well for the interval −1 ≪ g ≪ 1.
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