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I. LATTICE SCHWINGER MODEL WITH PERIODIC BOUNDARY CONDITIONS

Recall that the Hamiltonian of the Schwinger model on a lattice is

H =

N∑
n=1

[L(n) + α]
2
+ x

N−1∑
n=1

[
σ+(n)eiθ(n)σ−(n+ 1) + c.c.

]
+

µ

2

N∑
n=1

(−1)nσ3(n), (1)

where µ = 2mlatt

ae2 , mlatt = m− e2a
8 , x = 1

e2a2 and a is the lattice spacing. Together with the lattice Gauss law:

L(n)− L(n− 1) =
1

2
(σ3(n) + (−1)n) . (2)

The gauge part of the system depends on the choice of boundary conditions: 1) In Open Boundary Conditions
(OBC), we can completely eliminate the gauge dependence by fixing an initial electric field and imposing that the
incoming field is equal to the outgoing one (which is a consequence of charge conservation), i.e. E(0)/g = L(0)+α =
α = L(N) = E(N)/g; 2) In Periodic Boundary Conditions (PBC), we have a leftover gauge dependence.

If we focus on PBC, then L(0) = L(N) = L. So, our Gauss law reads

L(n) =

n∑
k=1

1

2

(
σ3(k) + (−1)k

)
+ L+ α, (3)

where α is a fixed background (external) field, and L can live on any of the links of the circle. So, we can eliminate
all the gauge dependence up to one θ and its canonically conjugated operator L (recall the commutation relation
[θ, L] = i). Let us put such operator on the link that joins the sites N and 1. Therefore, we can rewrite our
Hamiltonian for periodic boundary conditions as:

HPBC =

N∑
n=1

[
n∑

k=1

1

2

(
σ3(k) + (−1)k

)
+ L+ α

]2

+ x

N−1∑
n=1

[
σ+(n)σ−(n+ 1) + c.c.

]
+

+ x
[
σ+(N)eiθσ−(1) + σ+(1)e−iθσ−(N)

]
+

µ

2

N∑
n=1

(−1)nσ3(n). (4)

So, in general, we can consider the following Hamiltonian for the Schwinger model:

H =

N∑
n=1

[
n∑

k=1

1

2

(
σ3(k) + (−1)k

)
+ L+ α

]2

+ x

N−1∑
n=1

[
σ+(n)σ−(n+ 1) + c.c.

]
+

+ εx
[
σ+(N)eiθσ−(1) + σ+(1)e−iθσ−(N)

]
+

µ

2

N∑
n=1

(−1)nσ3(n), (5)

with ε = 0 and L = 0 for OBC and ε = 1 for PBC. Notice that,

HPBC = HOBC + 2

N∑
n=1

[
n∑

k=1

1

2

(
σ3(k) + (−1)k

)
+ α

]
L+NL2+

+ εx
[
σ+(N)eiθσ−(1) + σ+(1)e−iθσ−(N)

]
. (6)

Since we have an extra (bosonic) degree of freedom L, then in order to describe the Hilbert space, we consider
the basis |s1⟩ |s2⟩ . . . |sN ⟩ |ℓ⟩. Where L |ℓ⟩ = ℓ |ℓ⟩ and e±iθ |ℓ⟩ = |ℓ± 1⟩ and ℓ ∈ Z. So, the Hilbert space is infinite
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dimensional, that means that we have to truncate our basis up to some fixed Lmax. Thus −Lmax ≤ ℓ ≤ Lmax and
there are (2Lmax + 1) states for each chain of spins |s1⟩ |s2⟩ . . . |sN ⟩.

From (5) we see that as we increase L, the energy becomes larger, so considering on small values of Lmax should
be enough for the ground and first excited states of the system.

Focusing on the electric field (truncated) Hilbert space, from the commutation relation [L, θ] = −i one can show
that [L, e±iθ] = ±e±iθ. So, let us write what we know so far:

L |Lmax, ℓ⟩ = ℓ |Lmax, ℓ⟩
e±iθ |Lmax, ℓ⟩ = |Lmax, ℓ± 1⟩
[L, e±iθ] = ±e±iθ, (7)

this reminds us about the algebra of SU(2). Recall that the SU(2) algebra irreducible representation for a spin j
particle is

Jz |j,m⟩ = m |j,m⟩
J± |j,m⟩ ∝ |j,m± 1⟩
[Jz, J±] = ±J±. (8)

Therefore, we can conclude that the bosonic dof in our compact Schwinger model represents an SU(2) symmetry.
With operators L and e±iθ that span the extra Hilbert space1. Numerically, we can treat such dof as an additional
‘site’ with independent spin Lmax and include it in the OBC Hamiltonian with the additional terms shown in (6)
with ε = 1, as depicted in Figure 1. The first thing we can see is that this procedure breaks translational symmetry
in the lattice. If we would like to restore it, we could try a different process: for each link include an additional site
(as the one shown in Figure 1), so that we have a full chain with 2N ‘sites’ where the odd ones represent the original
lattice and the even ones represent the links. Next, identify the link-site 2N with the link-site 2 and do the same
procedure as before with zero coupling between sites and links, except for one (the bosonic dof). Despite the fact
that this preserves translational symmetry, it is more computationally costly in comparison with the previous one.

FIG. 1: Schematic picture of the inclusion of the bosonic degree of freedom into the system for numerical purposes.

II. JULIA IMPLEMENTATION

We first set up the tensor indices for our chain with the property that we have a spin 1/2 in the first N sites and
spin Lmax in the site N + 1:

1 We stress on the fact that this symmetry is a consequence of the truncation of the actual (infinite) Hilbert space of the system.
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sites = siteinds(n->if n<N+1 "S=1/2" else "Lmax="*string(Lmax) end ,N+1;
conserve_qns=false)

where here the “Lmax=n” with n ∈ Z needs to be implemented manually as shown in Appendix A.
Then, we create the OBC Hamiltonian:

os = OpSum () # Initialize a sum of operators for the Hamiltonian

#------------------Hamiltonian for OBC -----------------------
# Calculate Coulomb Hamiltonian (Sz=\sigma /2)
for j in 1:N-1

os2 = OpSum()
for k in 1:j

os2 .+= 1,"Sz", k
os2 .+= 1/2*( -1)^k, "Id", k

end
os2 .+= theta /(2*pi),"Id", j
# Square the previous sum
for k in 1:(2*j)+1

os = y*os2*os2[k] + os
end

end
# Add the OBC last term (corresponding to L(N)=L+theta /(2*pi))
os += y*( theta /(2*pi))^2, "Id", N

# Mass term in the Hamiltonian
for j in 1:N

os .+= mu*(-1)^j, "Sz", j
end

# XY Hamiltonian
for j in 1:(N - 1)

os += x, "S+", j, "S-", j + 1
os += x, "S-", j, "S+", j + 1

end

and include the PBC terms as shown in (6):

#--------------PBC terms --------------
#Coulomb additional terms
for j in 1:N-1

for k in 1:j
os .+= 2*y*e, "Sz", k, "Sz", N+1
os .+= y*e*(-1)^k, "Id", k, "Sz", N+1

end
os .+= 2*y*e*theta /(2*pi),"Id", j, "Sz", N+1
os .+= y*e, "Id", j, "Sz", N+1, "Sz", N+1

end
# Additional terms of (L+theta /(2*pi))^2
os .+= 2*y*e*theta /(2*pi),"Id", N, "Sz", N+1
os .+= y*e, "Id", N, "Sz", N+1, "Sz", N+1

# XY additional terms
os .+= x*e,"S+", N, "S+", N+1, "S-", 1
os .+= x*e,"S-", N, "S-", N+1, "S+", 1

where e= 0 means OBC and e= 1 corresponds to PBC.
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III. NUMERICAL RESULTS

A. Massless Case

Considering the massless case: µ = 1/4, we have that the model is exactly solvable and we can obtain the spectrum
of excitations of the system that are governed by zero-momentum multiparticle states (with energies as multiples of

the boson mass M = e/
√
π) and single particle non-zero momentum states (with energies given by E2

k = M2+
(
2πk
L

)2
,

with k = 0, 1, . . . , L− 1) [1]. Thus, by calculating the first energy levels of the spin Hamiltonian in (6), we can obtain
some of such excitations and compare with the exact results. We obtain the first three energy levels for both θ = 0
and θ = π, since for the massless case, the system is symmetric with respect to the two values of the background field.
So, the difference between them give us the precision of our calculations. These results are shown in the following
tables, using DMRG in Julia with bond dimension of 2000.

N = 4, x = 100, sweeps= 25

Parameters (m/e = 0) E0(Sz = 0) E1(Sz = 0) E2(Sz = 0) E3(Sz = 0)∗

θ = π, Lmax = 1 −272.08499708443753 −245.2734897572119 −205.3370269505082 −191.70150211610235

θ = 0, Lmax = 1 −272.0849970844373 −245.27348975721176 −205.34333346269497 −190.59649190086753

θ = π, Lmax = 3 −276.27618974358575 −264.3203188059014 −251.94542767344612 −238.49082044836425

θ = 0, Lmax = 3 −276.27618974358586 −264.3203188059016 −251.94542767344586 −238.49082044836445

θ = π, Lmax = 5 −276.28737100388815 −264.45812712510985 −252.6920505027035 −240.98894684693923

θ = 0, Lmax = 5 −276.2873710038878 −264.4581271251098 −252.6920505027036 −240.9889468469388

TABLE I: ∗The values of E3 for Lmax = 1 have different spins: Sz = −1 for θ = π and θ = 0.

N = 8, x = 100, sweeps= 40

Parameters (m/e = 0) E0(Sz = 0) E1(Sz = 0) E2(Sz = 0) E3(Sz = 0)∗

θ = π, Lmax = 1 −513.8023839716004 −496.41065925963596 −472.7707942884465 −473.7314083709304

θ = 0, Lmax = 1 −513.8023839716004 −496.41065925963653 −472.77079410146257 −474.2313254122319

θ = π, Lmax = 3 −515.3967418689417 −503.99688273271335 −492.6222185508734 −481.24494798698873

θ = 0, Lmax = 3 −515.3967418689429 −503.99688273271397 −492.6222185508733 −481.24494798698845

θ = π, Lmax = 5 −515.3967742009228 −503.9976169739953 −492.6299045630504 −481.29376872649766

θ = 0, Lmax = 5 −515.3967742009229 −503.99761697399464 −492.62990456305056 −481.29376872571936

TABLE II: ∗The values of E3 for Lmax = 1 have different spins: Sz = −1 for θ = π and Sz = +1 for θ = 0.

N = 12, x = 100, sweeps= 100

Parameters (m/e = 0) E0(Sz = 0) E1(Sz = 0) E2(Sz = 0)∗ E3(Sz = −1)

θ = π, Lmax = 1 −763.5955481037167 −748.7806301940523 −736.3162138010072 −734.5088186563228

θ = 0, Lmax = 1 −763.5955481037158 −748.7806301940532 −736.8162138010066 −734.0088186563225

θ = π, Lmax = 3 −764.5475418128043 −753.2198435484826 −741.9129370112697 −737.1022857837995

θ = 0, Lmax = 3 −764.5475418128027 −753.2198435484842 −741.9129370112702 −737.1002525357076

θ = π, Lmax = 5 −764.5475421941898 −753.2198545342728 −741.9130873337047 −737.1019886840583

θ = 0, Lmax = 5 −764.5475421941892 −753.2198545342711 −741.9130873337047 −737.1089486021432

TABLE III: ∗The values of E2 for Lmax = 1 have different spins: Sz = 1 for θ = π and θ = 0.

As shown in Figure 2, we can see that the gaps approach to the spectrum of the continuum theory2 with very

2 The value of Le = N−2
2

is just a guess, some deeper analysis should be done.
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N = 16, x = 100, sweeps= 100

Parameters (m/e = 0) E0(Sz = 0) E1(Sz = 0) E2(Sz = +1)∗ E3(Sz = −1)∗

θ = π, Lmax = 1 −1015.2283726004712 −1001.5222533664512 −994.1486466849917 −992.1461633347575

θ = 0, Lmax = 1 −1015.2283726004717 −1001.5222533664511 −994.6486466849914 −991.646163334758

θ = π, Lmax = 3 −1015.9148883308482 −1004.6104109390375 −995.2247510640028 −994.7313221032641

θ = 0, Lmax = 3 −1015.9148883308485 −1004.6104109390371 −995.230130497358 −994.7259433730328

θ = π, Lmax = 5 −1015.9148883442372 −1004.6104113641009 −995.2259124316716 −994.730164973228

θ = 0, Lmax = 5 −1015.9148883442348 −1004.6104113640994 −995.2301102669293 −994.7259671330488

TABLE IV: ∗The values of θ = π and Lmax = 1 have spin Sz = −1 for E2 and Sz = +1 for E3.

N = 20, x = 100, sweeps= 100

Parameters (m/e = 0) E0(Sz = 0) E1(Sz = 0) E2(Sz = +1)∗ E3(Sz = −1)∗

θ = π, Lmax = 1 −1267.5748046788178 −1254.4593014875213 −1250.0854954073648 −1247.9579079869247

θ = 0, Lmax = 1 −1267.5748046788174 −1254.4593014875231 −1250.5854954073639 −1247.4579079869275

θ = π, Lmax = 3 −1268.124444809774 −1256.8299624736703 −1251.051537762345 −1250.55892189605

θ = 0, Lmax = 3 −1268.124444809776 −1256.8299624736726 −1251.0585351105424 −1250.5519247595346

θ = π, Lmax = 5 −1268.124444810873 −1256.8299625095424 −1251.0519187267603 −1250.558541844667

θ = 0, Lmax = 5 −1268.1244448108732 −1256.8299625095378 −1251.0585153206255 −1250.5519452432127

TABLE V: ∗The values of θ = π and Lmax = 1 have spin Sz = −1 for E2 and Sz = +1 for E3.

small number of sites (recall that the jth gap is ∆j =
Ej−E0

2
√
x

). So, extrapolating3 N → ∞, we obtain M1/e =

0.5641799890656634 which is ∼ 9 · 10−6 away from its exact value 1√
π
. Similarly, M2/e = 1.1292614285641598 and

M3/e = 1.6453793396729026 which are ∼ 9 ·10−4 and ∼ 5 ·10−2 away from their exact values 2√
π
and 3√

π
, respectively

(as shown in Figure 3). The largest precision of our calculations is obtained by comparing results using θ = 0 and
θ = π and is of order 10−11. Note that there are two very close states in Figure 2 for N = 16, 20 corresponding
to the S = ±1 states. Since we are in the massless case, the system is invariant under a Z2 charge conjugation C
symmetry, therefore both states are degenerate in the continuum limit (the small difference may be a consequence of
finite lattice effects).

FIG. 2: First three energy gaps of the spectrum of the system for x = 100, Lmax = 5 and θ = 0. The red dashed line

corresponds to the curve E1 =
√

M2 +
(
2π
L

)2
with L = N−2

2e
.

3 This is not quite the continuum limit, since it still depends on x. For the real continuum value, after sending N → ∞, we need to
extrapolate x → ∞ (a → 0).
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FIG. 3: Extrapolation of the values of ∆1, ∆2, ∆3 for N → ∞. The red dashed lines corresponds to the fits M1 +
a1
N

+ a2
N2 +

a3
N3 + a4

N4 for ∆1, M2 +
b1
N

+ b2
N2 for ∆2, and M3 +

c1
N

for ∆3.

B. Massive Case

For this case, we will focus on finding the critical point of the model mc and we can use one of two methods (or
both): 1) Finite-size scaling: we find the values of the ratio [2]

R(N, x,m) =
N M(N, x,m)

(N − 2)M(N − 2, x,m)
(9)

where M(N, x,m) is the mass gap of the system with N sites and parameters x and m. The idea is to determine the
critical masses mc(N, x) by making use of the crossing method, i.e. looking for R(N, x,mc) = 1 and then extrapolate
to N → ∞. Finally, the continuum limit critical mass is obtained by mc = limx→∞ mc(∞, x).

2) Entanglement entropy: By considering the invariant RG ratio [3]:

Q(ℓ, ℓ′) = 3

[
SL
A(ℓ)− SL

A(ℓ
′)

log sin (πℓ/L)− log sin (πℓ′/L)

]
, (10)

where SL
A(ℓ) is the entanglement entropy between a subinterval of length ℓ with its complement in a system with PBC

of size L. If we are at the critical point, it has a well-known form [4]:

SA(ℓ) =
c

3
log

(
L

πa
sin

πℓ

L

)
+ c′1, (11)

with c as the central charge of the CFT and c̃1 is called the boundary entropy. Therefore,

lim
N→∞

Q(ℓ, ℓ′) = c(x). (12)
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While, away from mc, for L ≫ ξ (ξ being the correlation length) we have that SA ∼ log ξ and Q(ℓ, ℓ′) = 0.
Therefore, equation (10) implies that, if we plot the function Q(m) for different N , then there will be a maximum
which indicates the location of mc(N, x). As before, to obtain the continuum limit results, we should calculate
mc = limx→∞ mc(∞, x) and c = limx→∞ c(x). To find mc(N, x) more precisely, we can use the intersection method

again, by looking for when the ratio Q(L/2,L/4)
Q((L−2)/2,(L−2)/4) = 1. The advantage of 2) over 1) is that we do not need to

calculate excited energy levels, since the ground state is enough for obtaining the entanglement entropy via MPS.

Note: It is important to know that when implementing the Schwinger model code, we have to be aware that our
parameters are such that x < N , this because the limits N → ∞ and x → ∞ do not commute. Therefore, the bigger
the number of lattice sites, the smaller values of the lattice spacing a = 1/(ex) we can consider.

Appendix A: Julia code for higher spins on each site

Here is a code example of how to implement sites of the lattice in Julia with Lmax = 2. Generalizations can
be done with the same idea (notice the difference in normalization in the S± matrices compared to the usual spin
representation).

"""
space (:: SiteType"Lmax=2";

conserve_qns = false ,
conserve_sz = conserve_qns ,
qnname_sz = "Sz")

Create the Hilbert space for a site of type "Lmax=2".
Optionally specify the conserved symmetries and their quantum number labels."""

function ITensors.space(
:: SiteType"Lmax=2"; conserve_qns=false , conserve_sz=conserve_qns ,
qnname_sz="Sz"

)
if conserve_sz

return [QN(qnname_sz , +4) => 1, QN(qnname_sz , +2) => 1,
QN(qnname_sz , 0) => 1, QN(qnname_sz , -2) => 1, QN(qnname_sz , -4) => 1]

end
return 5

end

ITensors.val(:: ValName"+2", :: SiteType"Lmax=2") = 1
ITensors.val(:: ValName"+1", :: SiteType"Lmax=2") = 2
ITensors.val(:: ValName"0", :: SiteType"Lmax=2") = 3
ITensors.val(:: ValName" -1", :: SiteType"Lmax=2") = 4
ITensors.val(:: ValName" -2", :: SiteType"Lmax=2") = 5

ITensors.state (:: StateName"+2", :: SiteType"Lmax=2") = [1.0, 0.0, 0.0, 0.0, 0.0]
ITensors.state (:: StateName"+1", :: SiteType"Lmax=2") = [0.0, 1.0, 0.0, 0.0, 0.0]
ITensors.state (:: StateName"0", :: SiteType"Lmax=2") = [0.0, 0.0, 1.0, 0.0, 0.0]
ITensors.state (:: StateName" -1", :: SiteType"Lmax=2") = [0.0, 0.0, 0.0, 1.0, 0.0]
ITensors.state (:: StateName" -2", :: SiteType"Lmax=2") = [0.0, 0.0, 0.0, 0.0, 1.0]

function ITensors.op!(Op::ITensor , :: OpName"Sz", :: SiteType"Lmax=2", s::Index)
Op[s’ => 1, s => 1] = +2.0
Op[s’ => 2, s => 2] = +1.0
Op[s’ => 3, s => 3] = 0.0
Op[s’ => 4, s => 4] = -1.0
return Op[s’ => 5, s => 5] = -2.0

end
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function ITensors.op!(Op::ITensor , :: OpName"S+", :: SiteType"Lmax=2", s::Index)
Op[s’ => 2, s => 3] = +1.0
Op[s’ => 3, s => 4] = +1.0
Op[s’ => 4, s => 5] = +1.0
return Op[s’ => 1, s => 2] = +1.0

function ITensors.op!(Op::ITensor , :: OpName"S-", :: SiteType"Lmax=2", s::Index)
Op[s’ => 3, s => 2] = +1.0
Op[s’ => 4, s => 3] = +1.0
Op[s’ => 5, s => 4] = +1.0
return Op[s’ => 2, s => 1] = +1.0

end

ITensors.space (:: SiteType"SpinTwoMod"; kwargs ...) =
space(SiteType("Lmax=2"); kwargs ...)

ITensors.state(name::StateName , :: SiteType"SpinTwoMod") =
state(name , SiteType("Lmax=2"))

ITensors.val(name::ValName , :: SiteType"SpinTwoMod") =
val(name , SiteType("Lmax=2"))

function ITensors.op!(Op::ITensor , o::OpName , :: SiteType"SpinTwoMod", s::Index)
return op!(Op, o, SiteType("Lmax=2"), s)

end
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