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This series of notes are compiled from 3 main papers: Maldacena and Stanford (Com-
ments on SYK), Polchinsky and Rosenhaus (The Spectrum of SYK model) and Sarosi (AdS2,
Holography and the SYK model).

1 Characteristics and importance

The SYK model describes a 1-D system of N (Majorana) fermions with an all-to-all random
quartic interaction. It has the following important features:

1. It is solvable at strong coupling at large N .

2. It is maximally chaotic. The Lyapunov exponent λ is defined by an Out of Time Order
(OTO) 4-point function; in Einstein gravity λ = 2π

β
for a Black Hole (BH) and this is the

maximal allowed value for λ. SYK saturates this bound.

3. At low energies, an emergent conformal symmetry manifests in the 2-point functions.

So, why is SYK important to study? First of all, due to the scarcity of non-trivial systems
that can be solved at strong coupling, makes it worth to consider. Besides this, in the context
of classical chaos 1. and 2. do not imply that the model is solvable (integrable); however
in quantum systems, there is no restriction, as in this case. Finally, 2. and 3. suggests a
holographic dual that could be Einstein gravity in some form.

In summary, these 3 important aspects potentially classify SYK as a solvable model of
holography.

2 Two-point function

Let us start by writing the SYK model:

LSY K = −1

2

N∑
i=1

χi∂τχi −
1

4!

N∑
i,j,k,l=1

Jijklχiχjχkχl, (1)

where {χiχj} = δij and has quenched disorder 1 with random couplings Jijkl taken from a
Gaussian distribution:

1Quenched Disorder (QD) describes a statistical mechanical system with some parameters that are random
variables that do not evolve in time (quenched, frozen), e.g. Spin Glasses. It is hard to analyze and the common
method of approach for it is the replica trick. In contrast, Annealed Disorder (AD) describes a system whose
random parameters evolve in time (this evolution is related to that of the dof of the system). This is easier to
analyze than QD.
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P (Jijkl) ∼ exp

(
−
N3J2

ijkl

2(3!J2)

)
,

that is Jijkl = 0 and J2
ijkl =

3!J2

N3 , which represent the disorder average.

Note. The correlation function results will be the ones after the disorder
average was taken (Figure 2).

From the kinetic term, we can see that the energy dimensions are [χi] = 0 and from the
interaction one, [Jijkl] = 1.

The free theory takes the form, of Jijkl = 0 in 1:

Lfree = −1

2

N∑
i=1

χi∂τχi, (2)

with a two-point function, shown in B

G0 =
1

2
sgn(τ) (3)

(notice that there are some conventions of the 2-point function that use a minus sign in the
definition).

For SYK, because of the disorder average, large N and the anti-commutation relation, the
Feynman diagrams for the full (zero-temperature) 2-point function take a melonic form, as
shown in Figure 1.

Figure 1: 2-point function as a sum of melon Feynman diagrams at large N (this sum contains
only connected diagrams). The lines with a shaded circle correspond to a full dressed line and
the dashed ones are to indicate the average disorder.

Figure 2: Form of a melonic SYK diagram after the disorder average was taken. The dashed
line indicates the action of the average, as we can see from the matching of the indices.
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It is easier to write such sum in Fourier space, therefore:

G̃(iω) = G̃0 + G̃0Σ̃(iω)G̃0 + G̃0Σ̃(iω)G̃0Σ̃(iω)G̃0 + . . .

= G̃0 + G̃0Σ̃(iω)
(
G̃0 + G̃0Σ̃(iω)G̃0 + G̃0Σ̃(iω)G̃0Σ̃(iω)G̃0 + . . .

)
= G̃0 + G̃0Σ̃(iω)G̃(iω)

=⇒ G̃(iω) =
1

G̃0
−1 − Σ̃(iω)

(4)

from appendix B, the dressed 2-point function is then,

G̃(iω) =
1

−iω − Σ̃(iω)
. (5)

Known as Schwinger-Dyson equations. In coordinates space, we can write the corresponding
integral form, as follows2:

G(τ) = G0(τ) +

ˆ
dτ1

ˆ
dτ2G0(τ − τ1)Σ(τ1 − τ2)G(τ2) (6)

and since we know G0(τ) =
1
2
sgn(τ) =⇒ ∂τG(τ) = δ(τ), therefore,{

∂τG(τ)−
´
dτ ′Σ(τ − τ ′)G(τ ′) = δ(τ)

Σ(τ) = J2G(τ)3
. (7)

The S-D equations can also be obtained by performing average disorder via the replica trick
and evaluating the saddle point of the effective action. We start from the disordered average
partition function:

Z̄ ≡ Z =

ˆ
DJijkl

ˆ
Dχme

−
J2ijklN

3

2(3!J2) e−
´
dτL(τ)

=

ˆ
Dχm

ˆ
DJijkle

−
J2ijklN

3

2(3!J2)
−
´
dτ 1

4!
Jijklχiχjχkχl− 1

2

´
dτχi∂τχi

=

ˆ
Dχm

ˆ
DJijkle

−
J2ijklN

3

2(3!J2)
− 1

4!
Jijkl

´
dτχiχjχkχl+

3!
2(4!)

J2

N3

´
dτ1
´
dτ2χiχjχkχl(τ1)χiχjχkχl(τ2)

− 3!
2(4!)

J2

N3

´
dτ1
´
dτ2χiχjχkχl(τ1)χiχjχkχl(τ2)− 1

2

´
dτχi∂τχi

=

ˆ
Dχm

ˆ
DJijkle

−
(
Jijkl
J

√
N3

2(3!)
+J

√
1

8N3

´
dτχiχjχkχl

)2

+ J2

8N3

´
dτ1
´
dτ2χiχjχkχl(τ1)χiχjχkχl(τ2)

− 1
2

´
dτχi∂τχi

=
J
√
2(3!)π√
N3

ˆ
Dχme

J2

8N3

´
dτ1
´
dτ2χiχjχkχl(τ1)χiχjχkχl(τ2)− 1

2

´
dτχi∂τχi

(8)

Let, G(τ1, τ2) =
1
N

∑
i χi(τ1)χi(τ2) and Σ(τ1, τ2) = 0, therefore

2To show that G(τ1, τ2) = G(τ1 − τ2), we use the definition and the fact that the energy of
the vacuum is zero. So, Gij(τ1, τ2) = ⟨T χi(τ1)χj(τ2)⟩ =

〈
T eτ1Hχi(0)e

−τ1Heτ2Hχj(0)e
−τ2H

〉
=〈

T eτ2He(τ1−τ2)Hχi(0)e
−(τ1−τ2)Hχj(0)e

−τ2H
〉

=
〈
T e(τ1−τ2)Hχi(0)e

−(τ1−τ2)Hχj(0)
〉

= ⟨T χi(τ1 − τ2)χj(0)⟩ =
G(τ1 − τ2).
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Z =
J
√
2(3!)π√
N3

ˆ
Dχm

ˆ
DΣ δ(NΣ)

ˆ
DG δ

(
G− 1

N
χiχi

)
×

exp

(
J2

8N3

ˆ
dτ1

ˆ
dτ2 χiχjχkχl(τ1)χiχjχkχl(τ2)−

1

2

ˆ
dτχi∂τχi

)
=
J
√
2(3!)π√
N3

ˆ
Dχm

ˆ
DΣ

ˆ
DG

exp

[
−1

2

ˆ
dτ1

ˆ
dτ2NΣ(τ1, τ2)

(
G(τ1, τ2)−

1

N
χiχi

)
+
NJ2

8N4

ˆ
dτ1

ˆ
dτ2 χiχjχkχl(τ1)χiχjχkχl(τ2)−

1

2

ˆ
dτχi∂τχi

]
=
J
√
2(3!)π√
N3

ˆ
Dχm

ˆ
DΣ

ˆ
DG

exp

[
−1

2

ˆ
dτ1

ˆ
dτ2 (NΣ(τ1, τ2)G(τ1, τ2)− Σ(τ1, τ2)χi(τ1)χi(τ2)

−NJ
2

4
G(τ1, τ2)

4

)
− 1

2

ˆ
dτχi∂τχi

]
=
J
√
2(3!)π√
N3

ˆ
DΣ

ˆ
DG det (∂τ − Σ)N/2×

exp

[
−N

2

ˆ
dτ1

ˆ
dτ2

(
Σ(τ1, τ2)G(τ1, τ2)−

J2

4
G(τ1, τ2)

4

)]
= J

√
12π

N3

ˆ
DΣ

ˆ
DG e−N

Ieff
N ,

(9)

where

ISY K ≡ Ieff
N

= −1

2
log [det (∂τ − Σ)] +

1

2

ˆ
dτ1

ˆ
dτ2

(
Σ(τ1, τ2)G(τ1, τ2)−

J2

4
G(τ1, τ2)

4

)
,

(10)
here N plays the role of ℏ−1, the saddle of the action at leading order when ℏ → 0 gives us

the Euler-Lagrange equations. Hence, if we look for the saddle point of this effective action at
leading order in 1

N
, for N ≫ 1 (semi-classical limit), we have:

δIeff
δΣ

∣∣∣∣
Σ=Σ̃

= 0

=⇒ ˜G(τ) =
1

∂τ − Σ̃(τ)

δIeff
δG

∣∣∣∣
G=G̃

= 0

=⇒ Σ̃(τ) = J2G̃(τ)3,

(11)

which are the SD equations.
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Note. Where does the replica trick3 appear in this calculation?
The physical thermodynamical quantity here is F = − 1

β
logZ, so performing the disorder

average to F : F = − 1
β
logZ. However, by the replica trick, we can argue (in SYK) that

F = − 1
β
logZ.

The difference between logZ and logZ is of order N2−q, for SYKq (namely, for q = 4, the
replica off-diagonal terms are subleading in comparison with the diagonal ones. So, we can use
logZ and logZ interchangeably).

Strictly speaking, the derivation follows from (taken from Kitaev and Su, The Soft Mode in
the SYK model):

Zn =

ˆ
DΣDG e−I

(n)[Σ,G] ≈ exp
[
−min

Σ
max
G

I(n)[Σ, G]
]
,

where

I(n)[Σ, G] = −N
2
log [det (∂τ − Σ)] +

N

2

n∑
α,β=1

ˆ
dτdτ ′

(
Σαβ(τ, τ

′)Gαβ(τ, τ
′)− J2

4
Gαβ(τ, τ

′)4
)

with α and β being the replica indices. In the large N limit, the outer integrals DΣDG can be
performed by finding the saddle point: Maximum at G and minimum at Σ (classical solutions).

The most natural solution for the minimum over Σ is diagonal over replicas

Σαβ(τ, τ
′) = Σ(τ, τ ′)δαβ.

With such ansatz, taking the n→ 0 limit, we obtain logZ ≈ logZ ≈ −Ieff [Σ̃, G̃], as argued
before.

There is a subtlety in the previous action, which is that we need to regularize the determinant
term to eliminate the UV divergence, viz

det (∂τ − Σ) → det (∂τ − Σ)

det (∂τ )
.

The self-consistency of SD equations (7) (or similar ones) can be written for any model with
all-to-all interaction. BUT, their solution may not be physical if some ordering occurs, such
as spin glasses (see appendix C). For the q = 4 SYK model, the transition to a glassy phase

is expected at extremely low temperature: Tglass ∼ Je−
√
N [Quantum Fluctuations, Sachdev].

Therefore, we assume that T ≫ Tglass, in this regime the mean field solution is accurate if
T ≫ J

N
(lower temperatures imply that quantum fluctuations must be taken into account).

Besides, in order to have a holographic model, it is important that there is not a spin glass
phase. Why? Because a maximal Lyapunov exponent could most likely occur in the quantum

3The replica trick states that in quenched disordered systems and spin glasses,

logZ = lim
n→0

Zn − 1

n
,

that is, the average over n copies of the system. The subtlety in this method is that n is assumed to be an
integer, but to recover logZ, n has to approach zero continuously (this is not solved yet).
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regime (at low temperatures). Hence, it is important that the system does not freeze into a
spin glass as T is lowered4.

Let’s turn our attention in the IR limit of the SD equations, i.e. at low energies (or strong
coupling, J |τ | ≫ 1). Here we drop the ∂τG(τ) term and we know a solution of SD (see appendix
D):

GIR(τ) =

(
1

4πJ2

)1/4
1√
|τ |

sgn(τ) (12)

The new set of SD equations have an additional reparametrization symmetry in time. If
τ → f(τ), then G(τ1, τ2) → |f ′(τ1)f

′(τ2)|1/qG(f(τ1), f(τ2)):

J2

ˆ
d(f(τ ′)) Σ(f(τ), f(τ ′))G(f(τ ′), f(0)) = J2

ˆ
dτ ′|f ′(τ ′)| G3(f(τ), f(τ ′))G(f(τ ′), f(0))

= J2

ˆ
dτ ′|f ′(τ ′)| G3(τ, τ ′)

|f ′(τ ′)f ′(τ)|3/4
G(τ ′, 0)

|f ′(τ ′)f ′(0)|1/4

= J2

ˆ
dτ ′

G3(τ, τ ′)G(τ ′, 0)

|f ′(τ)|3/4|f ′(0)|1/4

= −δ(τ, 0)
|f ′(0)|

= −δ(f(τ), f(0)),

(13)

where in the last line, we used the SD equation in the IR limit. Thus, we can see that, at low
energies, the theory is invariant under the reparametrization group. Furthermore, if we map
the time line into a thermal circle (compactify time) and choosing f(τ) = tan πτ

β
, then

Gβ
IR =

(
1

4πJ2

)1/4(
π

β

)2/4
sgn(τ)√∣∣∣tan(πτβ )∣∣∣

∣∣∣∣sec2(πτβ
)∣∣∣∣1/4

=⇒ Gβ
IR =

π1/4

√
2
√
βJ

sgn(τ)√∣∣∣sin(πτβ )∣∣∣ .
(14)

This is the non-zero temperature 2-point function (in the IR).
Let us comment a little more about the IR emergent reparametrization symmetry: first,

in one-dimension it is equal to the conformal invariance, and second, in this limit we have
a space of solutions, namely, moving among those solutions has no energy cost (the action
does not change if we perform such transformation). Therefore, we will find divergences in
the correlation functions (as in the 2-point function at τ = 0 or τ = β). Besides, choosing
a particular solution from the saddle point equations implies a spontaneously breaking of the
symmetry.

4In this sense, SYK is simpler than SY, for SYK requires only one scaling limit N ≫ 1, whereas SY requires
two N ≫ 1 and M ≫ 1, where

HSY =
1√
M

N∑
j,k=1

JjkS⃗j · S⃗k, P (Jjk) ∼ exp

(
−
J2
jk

2J2

)

and the spins are in some representation of SU(M). So, depending on such representation, the ground state
may or may not have a spin glass phase.
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How do we deal with this? Well, we have to recall that this is a limiting behavior, the
SYK model does not have reparametrization symmetry (broken by the UV term) and, conse-
quently, those divergences do not exist. Furthermore, this symmetry is broken explicitly (not
spontaneously, that only works in the range of very low energies).

However, we would like to stay as close as possible to the IR. So, let’s see what is the
cost of the reparametrization transformation close to the IR point. To do this, let σ(τ1, τ2) =
δ(τ1, τ2)∂τ1 , so that the effective action (10) writes:

Ieff
N

= −1

2
log [det (σ − Σ)] +

1

2

ˆ
dτ1

ˆ
dτ2

(
Σ(τ1, τ2)G(τ1, τ2)−

J2

4
G(τ1, τ2)

4

)
,

and perform the change of variables Σ → Σ + σ, then

Ieff
N

= −1

2
log [det (−Σ)] +

1

2

ˆ
dτ1

ˆ
dτ2

(
Σ(τ1, τ2)G(τ1, τ2)−

J2

4
G(τ1, τ2)

4

)
+

+
1

2

ˆ
dτ1

ˆ
dτ2 σ(τ1, τ2)G(τ1, τ2),

where the last term is not invariant under reparametrization of time (can be thought of as a
perturbation of the IR action). If we are close to the IR, then our goal is to expand the last
term perturbatively to get the first non-zero correction to the CFT previously found.

Start with the low-energies solution (12):

G(τ1, τ2) = b
sgn(τ12)

|Jτ12|2∆

→ b sgn(τ12)
|f ′(τ1)f

′(τ2)|∆

J2∆ |f(τ1)− f(τ2)|2∆
,

where τ12 = τ1 − τ2 and ∆ = 1/q. Now let τ+ = τ1+τ2
2

and expand f around τ+:

f(τ1) = f
(
τ+ +

τ12
2

)
= f(τ+) +

τ12
2
f ′(τ+) +

τ 212
4

f ′′(τ+)

2
+
τ 312
8

f ′′′(τ+)

3!
+ · · ·

f(τ2) = f
(
τ+ − τ12

2

)
= f(τ+)−

τ12
2
f ′(τ+) +

τ 212
4

f ′′(τ+)

2
− τ 312

8

f ′′′(τ+)

3!
+ · · ·

f ′(τ1) = f ′
(
τ+ +

τ12
2

)
= f ′(τ+) +

τ12
2
f ′′(τ+) +

τ 212
4

f ′′′(τ+)

2
+ · · ·

f ′(τ2) = f ′
(
τ+ − τ12

2

)
= f ′(τ+)−

τ12
2
f ′′(τ+) +

τ 212
4

f ′′′(τ+)

2
+ · · ·

Therefore,
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G(τ1, τ2) ≈ b sgn(τ12)
|f ′(τ1)f

′(τ2)|∆

J2∆

∣∣∣τ12f ′(τ+) +
τ312
4
f ′′′(τ+)

3!

∣∣∣2∆
≈ b

sgn(τ12)

|Jτ12|2∆

∣∣∣f ′(τ+)
2 +

τ212
4
f ′(τ+)f

′′′(τ+)− τ212
4
f ′′(τ+)

2
∣∣∣∆∣∣∣f ′(τ+) +

τ212
4
f ′′′(τ+)

3!

∣∣∣2∆

≈ b
sgn(τ12)

|Jτ12|2∆

∣∣∣∣1 + τ212
4
f ′′′(τ+)
f ′(τ+)

− τ212
4

(
f ′′(τ+)
f ′(τ+)

)2∣∣∣∣∆∣∣∣1 + τ212
4

f ′′′(τ+)
3!f ′(τ+)

∣∣∣2∆
≈ b

sgn(τ12)

|Jτ12|2∆

(
1 + ∆

τ 212
4

[
f ′′′(τ+)

f ′(τ+)
−
(
f ′′(τ+)

f ′(τ+)

)2
])(

1− 2∆
τ 212
4

f ′′′(τ+)

3!f ′(τ+)

)

≈ b
sgn(τ12)

|Jτ12|2∆

(
1 + ∆

τ 212
4

[
f ′′′(τ+)

f ′(τ+)
−
(
f ′′(τ+)

f ′(τ+)

)2
]
−∆

τ 212
2

f ′′′(τ+)

3!f ′(τ+)

)

≈ b
sgn(τ12)

|Jτ12|2∆

(
1 + ∆

τ 212
4

[
f ′′′(τ+)

f ′(τ+)
−
(
f ′′(τ+)

f ′(τ+)

)2

− f ′′′(τ+)

3f ′(τ+)

])

≈ b
sgn(τ12)

|Jτ12|2∆

(
1 + ∆

τ 212
4

[
2

3

f ′′′(τ+)

f ′(τ+)
−
(
f ′′(τ+)

f ′(τ+)

)2
])

≈ b
sgn(τ12)

|Jτ12|2∆

(
1 + ∆

τ 212
6

[
f ′′′(τ+)

f ′(τ+)
− 3

2

(
f ′′(τ+)

f ′(τ+)

)2
])

≈ b
sgn(τ12)

|Jτ12|2∆

(
1 +

∆

6
τ 212 Sch (f(τ+), τ+)

)
,

where Sch (f(τ), τ) = f ′′′(τ)
f ′(τ)

− 3
2

(
f ′′(τ)
f ′(τ)

)2
. Hence, close to the IR and under reparametrization

of time, we have an additional contribution to the action that reads

ISch ≈ b
∆

12J2∆

ˆ
dτ1

ˆ
dτ2 σ(τ1, τ2)

sgn(τ12)

|τ12|2∆−2
Sch (f(τ+), τ+) ,

this is called the Soft mode contribution to the action described by the Schwarzian. Why soft?
The reason is that, at the IR, the reparametrization of time IS a symmetry and we have a
family of solutions that describe the system. But, close to the low energy limit, the system has
only one minima (the reparametrization symmetry is broken) and thus ISch describes how the
system is slowly oscillating around it.

3 Four-point function

The 4-point function is given by

Γ(τ1, τ2, τ3, τ4) =
1

N2

N∑
i,j=1

⟨χi(τ1)χi(τ2)χj(τ3)χj(τ4)⟩ = G(τ1, τ2)G(τ3, τ4)+
1

N
F(τ1, τ2, τ3, τ4)+· · · .
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Where the connected diagrams F , at large N , are ladder diagrams5 and scale as 1
N
:

Figure 3: 4-point function as a sum of ladder diagrams at large N .

Therefore, the 1
N

contribution to the four-point function can be read off from the previous
diagrams as:

F(τ1, τ2, τ3, τ4) = F0(τ1, τ2, τ3, τ4) +

ˆ
dτa

ˆ
dτb K(τ1, τ2, τa, τb)F(τa, τb, τ3, τ4), (15)

where6

F0(τ1, τ2, τ3, τ4) = G(τ1 − τ4)G(τ2 − τ3)−G(τ1 − τ3)G(τ2 − τ4)

K(τ1, τ2, τa, τb) = −3J2G(τ1 − τa)G(τ2 − τb)G
2(τa − τb)

(16)

Figure 4: Cut of a melon diagram is equivalent to a ladder diagram that contributes to the
four-point function. The cut of a line correspond to a division by N .

5Naively, as one can see this in Figure 4, a cut of one of the lines of the leading melon contributions is
topologically equivalent to a ladder diagram that scales as 1

N since there is no sum over such line anymore
(division by N).

6The minus signs come from the definition of Γ by moving one fermion and applying the anti-commutation
relation. The factor of three comes from the interaction ∝ 3!, but by symmetry we can exchange the dummy
times τa and τb, which implies a division by 2 for not overcounting (from the Feynman diagrams point of view,
this can be argued as the symmetric factor obtained by exchanging the two loop lines).
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One way of solving F through (15) is to start with a set of eigenvectors:

vα(τa, τb) =
1

|τa − τb|2α
sgn(τa − τb), (17)

with eigenvalues7

g(α) = −3

2

1

(1− 2α) tan (πα)
. (18)

With this set of eigenvectors, one can use the SL(2,R) algebra to generate all of the eigen-
vectors. The key property is that conformal invariance allows to diagonalize K.

Another way of finding F is: the sum in Figure 3 can also be seen as a geometric series,
where the kernel K is the ratio of such series8, namely,

F =
∑
n

KnF0 =
1

1−K
F0, (19)

where in the last equality it is intended as matrix inversion.
A way of solving this equation is summarized in the following steps:

1) Understand properties of F as a function of the cross ratio.

2) Find the eigenfunctions of the Casimir C of the group SL(2,R) with the previous prop-
erties.

3) Determine the set of eigenvalues h of C to have a complete basis of functions.

4) Compute the eigenvalues k(h) of K as a function of h.

5) Calculate the inner products ⟨Ψh,F0⟩ and ⟨Ψh,Ψh⟩

6) Obtain F(z) = 1
1−KF0 =

∑
hΨh(z)

1
1−k(h)

⟨Ψh,F0⟩
⟨Ψh,Ψh⟩

.

In the conformal limit, F will transform under SL(2,R) like a four-point function of fields
of dimension ∆:

F(τ1, τ2, τ3, τ4) = G(τ12)G(τ34)F(z), z =
τ12τ34
τ13τ24

, (20)

i.e.

⟨χ(τ1)χ(τ2)χ(τ3)χ(τ4)⟩ = ⟨χ(τ1)χ(τ2)⟩ ⟨χ(τ3)χ(τ4)⟩
∑
h

(Ch
χχ)

2zh 2F1(h, h, 2h, z),

where

- h runs over the set of conformal primaries (scaling dimensions of primaries).

- Ch
χχ set of 3-point function coefficients (or Operator Product Expansion, OPE, coeffi-

cients).

7The proof that this set of functions are eigenfunctions of K is shown in Appendix E.
8Here, we treat F , F0 and K as matrices whose one index is formed by the first two arguments and the

other index by the last two.
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- zh 2F1(h, h, 2h, z) is the conformal block, summing the SL(2,R) contribution of the de-
scendants of the primary h.

The above expression is called the decomposition into conformal blocks : Naively, it is the same
as inserting a complete set of states between the two pairs of operators. Succeeding in writing
F in such a form, the scaling dimensions h and OPE coefficients can be read off explicitly.

Therefore, let us use the following generators of the SL(2,R) algebra:

D̂ = −τ∂τ −∆, P̂ = ∂τ , K̂ = τ 2∂τ + 2τ∆

[D̂, P̂ ] = P̂ , [D̂, K̂] = −K̂, [P̂ , K̂] = −2D̂

One can check that all this generators commute with the kernel, in the following sense9:

(P̂1 + P̂2)K(τ1, τ2, τ3, τ4) = K(τ1, τ2, τ3, τ4)(P̂3 + P̂4)

Therefore, this symmetry implies that the 4-point functions are simple powers times a function
of the SL(2,R) invariant cross-ratio: z. So, we can represent the kernel in the space of functions
of a single cross-ratio instead of the space of functions of 2 times, viz, K(z, z̃) instead of
K(τ1, τ2, τ3, τ4).

Now, since K commutes with the generators of the SL(2,R) algebra, it commutes with the
Casimir operator C as well, where C is built from the sum of the generators acting on 2 times:

C = (D̂1 + D̂2)
2 − 1

2
(K̂1 + K̂2)(P̂1 + P̂2)−

1

2
(P̂1 + P̂2)(K̂1 + K̂2)

= 2(∆2 −∆)− K̂1P̂2 − P̂1K̂2 + 2D̂1D̂2

for the second line, we used:

D̂2 = (−τ∂τ −∆)(−τ∂τ −∆) = τ∂τ + τ 2∂2τ + 2∆τ∂τ +∆2

1

2
P̂ K̂ =

1

2
∂τ (τ

2∂τ + 2τ∆) = τ∂τ +
τ 2

2
∂2τ +∆+ τ∆∂τ

1

2
K̂P̂ =

1

2
(τ 2∂τ + 2τ∆)∂τ =

τ 2

2
∂2τ + τ∆∂τ .

Why do we care about the Casimir? Simply because it is easier to diagonalize. Since it is
a differential operator with a family of eigenfunctions given by simple powers times functions
Ψh(z) and because of the non-degeneracy of the spectrum, Ψh(z) must be the eigenfunctions
of K(z, z̃).

C is an order 2 operator, so if CΨh = h(h− 1)Ψh, then KΨh = k(h)Ψh. This equation has
multiple solutions for any h ∈ C. Thus, the general solution to CΨh = h(h − 1)Ψh is a linear
combination of conformally invariant three-point functions:

Ψh(τ1, τ2) =

ˆ
dτ0 gh(τ0)f

τ0
h (τ1, τ2), (21)

where f τ0h (τ1, τ2) =
sgn(τ12)

|τ01|h|τ02|h|τ12|1−h . By replacing this in KΨh = k(h)Ψh, we can obtain10 k(h):

9Here the notation P̂i = ∂τi
10In general, the eigenfunctions of the exact (thermal) kernel depend on two numbers:

Wh,m(τ1, τ2) =
1

β

ˆ β

0

dτ0 W τ0
h (τ1, τ2)e

im
2πτ0

β ,

11



k(h) = −3

2

tan
[
π
2

(
h− 1

2

)]
h− 1

2

(22)

If we replace h = 2α− 1
2
, then we obtain k

(
2α− 1

2

)
= g(α).

However, from the solutions Ψh(τ1, τ2), we need to find the subset that form a complete
basis of anti-symmetric eigenfunctions for a suitable choice of inner product (this is a non-
trivial calculation, we can refer to Maldacena and Stanford paper). In other words, this is to
say that we restrict the eigenvalue of the Casimir h(h−1) has to be real. So, the allowed values
of h are:

hs =
1

2
+ is, s ∈ R & hn = 2n n ∈ Z+.

This allow us to write

F(z) =

ˆ ∞

−∞
ds

αhs(τ1, . . . , τ4)

1− k(hs)
Ψh(z) +

∞∑
n=1

βhn(τ1, . . . , τ4)

1− k(hn)
Ψh(z), (23)

where α and β are functions that depend on the eigenfunctions and measure factors coming
from the inner product.

An important fact here is the n = 1 case, i.e. at h1 = 2, we obtain

k(h1) = k(2) = −3

2

tan
(
3π
4

)
3
2

= 1.

Clearly, this represents a divergence in the four-point function11. Although, neglecting such
pole, from (23) we need to extract the scaling dimensions and the OPE coefficients. To do this,
the claim is that βh is such that

F(z) =

ˆ ∞

−∞
ds

αhs(τ1, . . . , τ4)

1− k(hs)
Ψh(z) +

∞∑
n=2

Res

[
αhn(τ1, . . . , τ4)

1− k(hn)
Ψh(z)

]∣∣∣∣
h=2n

, (24)

and this can be interpreted as a single contour integral whose contour is a line and small circles
around the poles of αhn (at h = 2n), as shown in Figure 5. However, the poles at even integer
values are cancelled by deforming the contour by pushing the continuous line to the right, at
the cost of picking up the poles of 1

1−k(h) , namely, the values hm for which k(hm) = 1.

where W τ0
h (τ1, τ2) =

sgn(τ12)

| sin 2πτ01
β |h| sin 2πτ02

β |h| sin 2πτ12
β |1−h

. But, in the conformal limit these functions are all degen-

erate in m. In the zero-T case described above, the dependence on m is included in the function gh(τ0).
11It is important to notice here that this pole arises from the fact that we are using the conformal kernel (IR

limit), if we use the exact kernel (full spectrum of energies) we will find a correction so that k(h1) = 1 + #,
which is a big number, but not a pole.
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Figure 5: Contour of integration of F . On the left it is a line and small circles enclosing the
poles of αh. On the right, the line integration contour is moved in such a way that it now
cancels the previous poles of αh (different orientations) and encloses the values of h such that
k(h) = 1. Image taken from Maldacena and Stanford paper.

Therefore, the new sum of residues turns out to be (without the h0 = 2 pole):

F(z) =
∞∑
m=1

c2hmz
hm

2F1(hm, hm, 2hm, z), (25)

where we have written the 4-point function in a conformal block way, with scaling dimensions
hm = 2∆ + 1 + 2m + ϵm (ϵm are the anomalous dimensions) and the OPE coefficients are
proportional to chm .

We can write the generalization of the eigenvalues of the kernel, since the previous formula
is valid for q = 4. For any q, the corresponding expression is

k(h, q) = −(q − 1)
Γ
(

3
2
− 1

q

)
Γ
(
1− 1

q

)
Γ
(

1
2
+ 1

q

)
Γ
(

1
q

) Γ
(

1
q
+ h

2

)
Γ
(

3
2
− 1

q
− h

2

) Γ
(

1
2
+ 1

q
− h

2

)
Γ
(
1− 1

q
+ h

2

) . (26)

From this we can see that k(h, 2) = −1 (independent of h), so SY K2 does not have any
poles in the kernel.

As discussed before, the solutions to k(h, q) = 1 correspond to divergences of the (conformal)
kernel. Let us focus on the h1 = 3 + 2

q
+ ϵ1 mode. Considering q ≫ 1, and expanding (26), we

have12 up to O(1/q4):

h1 = 3 +
4

q
− 2

q2
+

4π2 − 47

q3
+

(
797
2

− 52π2

3
− 192ζ(3)

)
q4

+ · · · (27)

Similarly, solving numerically for small q, we can see the results in Figure 6. From which
we can extract the first 3 non-integer values of hm for q = 4, namely

h1(4) ≈ 3.773535618637616, h2(4) ≈ 5.679458989211242, h3(4) ≈ 7.631970759040549.

that is, the canonical dimension of the primary operator Oh1 in Majorana SY K is 3.5 and its
corresponding anomalous dimension is ϵ1 ≈ 0.2735356186376161 . . .

12In order to fix the coefficients of the expansion, we start with h1 = 3 + α
q , solve k(h1, q) = 1 and find the

value of x by requiring the leading order coefficient to be 1 (α = 4). Then, we write h1 = 3+ 4
q +

β
q2 and expand

(26) up to 1/q order, fix the coefficient to be zero and find β = −2. The following coefficients are fixed in a
similar way, i.e. by asking the coefficients of higher orders in the 1/q expansion, of the equation k(h1, q) = 1,
to be zero.
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Figure 6: Kernel eigenvalues for large q (left) and small q (right), obtained by solving equation
(26) for the h1 mode.

Note. How can one see that the 4-point function is not divergent in the h0 = 2 mode?

To answer this question, let us recall what limiting values the (zero-T ) 2-point function has:

G(τ) =

{(
1
4π

)1/4 sgn(τ)√
|Jτ |

, J |τ | ≫ 1 (IR)

1
2
sgn(τ) , J |τ | ≪ 1 (UV )

. (28)

The four-point function previously obtained was done considering the conformal (IR) solu-
tion and integrated over all times. Clearly, this is not valid since the true two-point function
interpolates between the IR and UV functions. Therefore, the 4-point function will not have a
divergence at the h0 mode, it will acquire a big value, but it will not diverge.

To see this explicitly, one can consider an example13:

Gtest(τ) =

(
1

4π

)1/4
sgn(τ)√

|Jτ |
1√

1 + 4
|Jτ |

(
1
4π

)1/2 =

{(
1
4π

)1/4 sgn(τ)√
|Jτ |

, J |τ | ≫ 1 (IR)

1
2
sgn(τ) , J |τ | ≪ 1 (UV )

, (29)

close to the IR, viz Jτ | ≫ 1:

Gtest(τ) =

(
1

4π

)1/4
sgn(τ)√

|Jτ |
1√

1 + 4
|Jτ |

(
1
4π

)1/2 ≈ Gc(τ)

[
1− 1

|Jτ |
√
π
+

3

2π

1

|Jτ |2
+ · · ·

]
,

where Gc(τ) = GIR(τ). Thus, one can see that there is an additional contribution to the 2-point
function to be consider in the kernel eigenvalues calculation, so that the divergence is removed.
In the next section, we will give the thermal two-point function close to the conformal limit
(βJ ≫ 1).

4 Thermodynamics in q = 4

Recalling the effective action from (10)

13This is an example of an interpolation function that converge to G(τ) in both limits, but it’s not the real
two-point function. To obtain the real one, we need to solve SD equations for a generic τ .
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Ieff
N

= −1

2
log [det (∂τ − Σ)] +

1

2

ˆ β

0

dτ1

ˆ β

0

dτ2

(
Σ(τ1, τ2)G(τ1, τ2)−

J2

q
G(τ1, τ2)

q

)
,

replacing SD equations above, gives us

Ieff
N

= −1

2
log [det (∂τ − Σ)] +

1

2

ˆ β

0

dτ1

ˆ β

0

dτ2

(
Σ(τ1 − τ2)G(τ1 − τ2)−

J2

q
G(τ1 − τ2)

q

)
= −1

2
log [det (∂τ − Σ)] +

J2

2

ˆ β

0

dτ1

ˆ β

0

dτ2

(
G(τ1 − τ2)

q − 1

q
G(τ1 − τ2)

q

)
= −1

2
log [det (∂τ − Σ)] +

J2β

2

ˆ β

0

dτ12

(
G(τ12)

q − 1

q
G(τ12)

q

)
= −1

2
log [det (∂τ − Σ)] +

(q − 1)

q

(βJ)2

4π

ˆ 2π

0

dυ G

(
βυ

2π

)q
,

where υ = 2πτ12
β

. Now, we aim to show that G = G(βJ). We can do this by dimensional

analysis, since G ∼ χ2, and from the kinetic term in the SY K Hamiltonian we know that
the dimension in energy of the fermions is zero. Therefore, from the interacting term we can
conclude that [J ] = 1 (in energy). Hence, [G] = 0 and as the dimensionful parameters in
energy available are β and J , the dependence of the 2-point function is on the dimensionless
combination βJ , viz, G = G(βJ).

Therefore, the effective action depends only on the combination βJ and

βF

N
= − logZ =

Ieff
N

≡ −f(βJ).

Similarly, given that E = −∂β logZ = −∂β f(βJ) = −Jf ′(βJ), or (because f depends on
the combination βJ)

βE = −β∂βf(βJ) = −J∂Jf(βJ) = −Jβf ′(βJ),

we can conclude that

ϵ(βJ) ≡ E

J
= −f ′(βJ),

from which we can obtain an expansion for βJ ≫ 1.
Another way of calculating the energy is by the use of the action:

βE = β∂β

(
βF

N

)
= J∂J

(
Ieff
N

)
= −βJ

2

q

ˆ β

0

dτ G(τ)q =
β

q
∂τG(τ)|τ→0+ ,

where in the last equality, we replaced SD equations (use the KMS condition, the PH symmetry
and take the corresponding limit). Obtaining,

ϵ(βJ) =
1

Jq
∂τG(τ)|τ→0+ .

From the main reference (Maldacena and Stanford), we can write the free energy expansion
in powers of βJ ≫ 1:

f(βJ) = −(βJ)ϵ0 + s0 +
2π2αS
βJ

− 2π2αSαK
(βJ)2|k′(2)|

+ · · · , (30)
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where ϵ0 ≈ −0.0406303 is the ground state energy, s0 = 1/2 log 2−
´ ∆
0
dxπ(1/2−x) tan (πx) ≈

0.232424 is the zero-temperature entropy, αS = αK
128π

≈ 0.01001, and αK = −4k′(2)α0 (with
k(h) as the eigenvalue function of the kernel).

From there, the energy expansion:

ϵ(βJ) = ϵ0 +
c

2

1

(βJ)2
+ c2

1

(βJ)3
+ cp

1

(βJ)h1
+ · · · , (31)

where c/2 = 1
48
π(2 + 3π)α0 ≈ 0.198008, α0 ≈ 0.2648056 and c2 = π

6
(2 + 3π)α2

0 ≈ −0.41947.
Together with the exact relation c2

(c/2)2
= − 384

π(2+3π)
≈ −10.698763.

Going back to the effective action, we can write

f(βJ) = −Ieff
N

=
1

2
log [det (∂τ − Σ)]− (q − 1)

q

βJ2

2

ˆ β

0

dτ ′ G (τ ′)
q
,

using SD equations, as before,

f(βJ) =
1

2
log [det (∂τ − Σ)] +

(q − 1)

2
(βJ)ϵ(βJ),

and since ϵ(βJ) = −f ′(βJ), we can calculate the determinant14

log [det (∂τ − Σ)] = 2f(βJ) + (q − 1)(βJ)f ′(βJ)

= −(q + 1)(βJ)ϵ0 + 2s0 − (q − 3)
c/2

(βJ)
− (q − 2)

c2
(βJ)2

+ · · ·
(32)

5 Correlation functions

As we know, the SY K model behaves as a CFT in the IR limit, therefore it shares some of its
properties (the details on the derivation of the following formulae can be found in Appendix F).
In particular, for any operator Oh with scaling dimension h, the n-point correlation functions,
for n ≤ 3, have the following form:

⟨Oh(τ)⟩ = 0 (1 pt function)

⟨Oh(τ1)Oh(τ2)⟩ =
1

|τ12|2h
(2 pt function)

⟨Oh1(τ1)Oh2(τ2)Oh3(τ3)⟩ =
Ch1h2h3

|τ12|h1+h2−h3|τ13|h1+h3−h2|τ23|h2+h3−h1
(3 pt function),

(33)

where Ch1h2h3 is uniquely fixed.
For n ≥ 4, the correlation functions become more complicated to calculate since we have

to include the invariant cross-ratios. And, as such, we cannot fix their corresponding general
form only using the covariance under the conformal group, as in the previous cases.

With this picture in mind, the next question to address is: What is the form of the primary
operators Oh in SYK? Going back to the effective action, one can see that there is a O(N)
symmetry in the bilocal fields. This is easier to see if we write the correlation function as a
vector product, namely, G ∼ χTχ and

14Note here that, at the end of the day, we have to regularize the determinant result since it diverges (UV
divergence).
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χ =


χ1

χ2
...
χN

 .

Since the operator dimensions are hm = 1 + 2m + 2∆ + ϵm (for m = 1, 2, . . . and h0 = 2),
for large m: hm = 1 + 2m+ 2∆. Then naively

Ohm = χi∂
2m+1
τ χi.

However, the real form of the primaries is (Gross and Rosenhaus: Generalization of SYK):

Ohm =
N∑
i=1

2m+1∑
k=0

dmk∂
k
τχi(τ)∂

2m+1−k
τ χi(τ), (34)

where the coefficients dmk are chosen in such a way that the operators are primary.
15Since there is an infinite number of scaling dimensions, defined from the equality k(h) = 1,

we have an infinite set of bilinear operators given by (34). Phenomenologically, the SY K model
can be seen as a CFT plus a perturbation given by the infinite set of irrelevant primaries16:

ISY K = ICFT +
∑
h

gh

ˆ
dτOh(τ), (35)

where the sum runs over all the dimensions h0, h1, h2, . . . and gh is the perturbative coupling.
From this expression, we can obtain the two-point function:

G(τ12) =
1

Z

ˆ
Dχi

1

N
χi(τ1)χi(τ2)e

−ISYK

=
1

Z

ˆ
Dχi

1

N
χi(τ1)χi(τ2)e

−ICFT e−
∑
h gh

´
dτOh(τ)

=
1

Z

ˆ
Dχi

1

N
χi(τ1)χi(τ2)e

−ICFT −
∑
h

gh

ˆ
dτ3

1

Z

ˆ
Dχi

1

N
χi(τ1)χi(τ2)Oh(τ3)e

−ICFT + · · ·

= Gc(τ12)−
∑
h

gh

ˆ
dτ3

1

N
⟨χi(τ1)χi(τ2)Oh(τ3)⟩+

+
1

2

∑
h1,h2

gh1gh2

ˆ
dτ3

ˆ
dτ4

1

N
⟨χi(τ1)χi(τ2)Oh1(τ3)Oh2(τ4)⟩+ · · ·

(36)

To fix the functional form of the three-point function appearing in the first order perturba-
tion of G, we use the conformal form shown in (33) together with the fact that such function
must be chosen to solve the eigenvalue equation in the IR (neglecting the bare term in Figure
7):

vh(τ1, τ2, τ0) =

ˆ
dτ3

ˆ
dτ4K(τ1, τ2, τ3, τ4)vh(τ3, τ4, τ0),

15This part is taken from Tarnopolsky, et al: Excitation spectra...
16Such operators are irrelevant in the sense that as we approach to the IR, they give us the same CFT as if

they were not there. That is at large τJ , we approach to the same CFT results and not have a new IR fixed
point.
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where K(τ1, τ2, τ3, τ4) is the same kernel specified in the four-point function. But we know that

ˆ
dτ3

ˆ
dτ4K(τ1, τ2, τ3, τ4)vh(τ3, τ4, τ0) = k(h)vh(τ1, τ2, τ0),

therefore we are looking for the solutions such that the eigenvalue of the kernel is 1 (which
determine the scaling dimensions). Hence,

vh(τ1, τ2, τ3) ≡
1

N
⟨χi(τ1)χi(τ2)Oh(τ3)⟩ =

b∆chsgn(τ12)

|Jτ12|2∆−h|Jτ13|h|Jτ23|h
, (37)

where ch is determined by solving the eigenvalue equation and is

c2h =
1

(q − 1)b

(h− 1/2)

π tan πh
2

Γ(h)2

Γ(2h)

1

k′(h)
. (38)

Figure 7: Diagrams that represent the 3-point function ⟨χi(τ1)χ(τ2)Oh(τ3)⟩. The sum contains
the same kernel K as in the four-point function case discussed before. The bare (tree level)
diagram represents the UV limit, while the second term represents the IR one.

At zero temperature, up to third order correction17 to G(τ) is

G(τ) = Gc(τ)

[
1−

∑
m

αm
|Jτ |hm−1

−
∑
m,n

amnαmαn
|Jτ |hm+hn−2

−
∑
m,n,p

amnpαmαnαp
|Jτ |hm+hn+hp−3

− · · ·

]
, (39)

with

α2
h =

g2h
J2

1

(q − 1)b k′(h)

π tan πh
2

(h− 1/2)

Γ(2h)

Γ(h)2
.

So, the first terms in the corrected two-point correlation function read:

G(τ) = Gc(τ)

[
1− α0

|Jτ |
− a00α

2
0

|Jτ |2
− α1

|Jτ |h1−1
− a000α

3
0

|Jτ |3
− a01α0α1

|Jτ |h1
− · · ·

]
, (40)

17The detailed calculation for the first order correction can be found in Appendix G, the other orders are
referred to Tarnopolsky, et al.
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where h1 ≈ 3.7735 and

a00 =
(2∆ + 1)(2− 2∆− cos 2π∆)

8∆cos2 π∆
a000 =

(∆ + 1)(2∆ + 1)(6∆− 8 + cos 2π∆)

24∆2 cos2 π∆
.

To generalize the previous result to non-zero temperature (but still focusing in the strong
coupling or low temperature regime, βJ ≫ 1), we can use the reparametrization symmetry18.
So that, the expansion of G(τ), for τ ∈ [0, β], has the following form:

Gβ(τ) = Gβ
c (τ)

[
1− α0

βJ
fh0(τ)−

a00 α
2
0

(βJ)2
fh0,h0(τ)−

α1

(βJ)h1−1
fh1(τ)−

a000α
3
0

(βJ)3
fh0,h0,h0(τ)− · · ·

]
,

(41)
where a00 =

9
4
, a000 = −65

4
and

Gβ
c (τ) =

(π
4

)1/4 1√
βJ sin πτ

β

, f2(τ) = 2 +
π − πτ

β

tan πτ
β

, f2,2(τ) =
π2

2

(
2

sin2 πτ
β

− 1

)
.

In general, fh(τ12) is obtained by solving

δ(1)Gβ = −
∑
h

gh

ˆ β

0

dτ3
1

N
⟨χi(τ1)χi(τ2)Oh(τ3)⟩β

in order to match (39), we obtain

δ(1)Gβ = −Gβ
c (τ12)

∑
m

αm
(βJ)hm−1

fhm(τ12),

with

fh(τ12) = A

ˆ β

0

dτ3

∣∣∣sin πτ12
β

∣∣∣h∣∣∣sin πτ13
β

∣∣∣h ∣∣∣sin πτ23
β

∣∣∣h
and A can be fixed by taking the zero temperature limit to math (39), namely

fh(τ) −→
β→∞

∣∣∣∣βτ
∣∣∣∣h−1

.

The expressions for fh,h′(τ) and fh,h′,h′′(τ) are unknown and we can fix them via numerical
calculations.

Another important quantity that can be obtained from the perturbed action (35) is the free
energy that, up to second order, is

18This is possible because the expectation values are taken with respect to the CFT action, which has the
reparametrization symmetry.
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βF = − log

[ˆ
Dχe−ISYK

]
= − log

[ˆ
Dχe−ICFT e−

∑
h gh

´
dτOh(τ)

]
= − log

[ˆ
Dχe−ICFT

(
1−

∑
h

gh

ˆ β

0

dτOh(τ) +
1

2

∑
h,h′

ghgh′

ˆ β

0

dτ1dτ2Oh(τ1)Oh′(τ2)

)]

= βFCFT − log

[
1−

∑
h

gh

ˆ β

0

dτ ⟨Oh(τ)⟩β +
1

2

∑
h,h′

ghgh′

ˆ β

0

dτ1dτ2 ⟨Oh(τ1)Oh′(τ2)⟩β

]

= βFCFT +
∑
h

gh

ˆ β

0

dτ ⟨Oh(τ)⟩β −

− 1

2

∑
h,h′

ghgh′

ˆ β

0

dτ1

ˆ β

0

dτ2

(
⟨Oh(τ1)Oh′(τ2)⟩β − ⟨Oh(τ1)⟩β ⟨Oh′(τ2)⟩β

)
,

where βFCFT/N = βE0−s0, s0 is the zero-temperature entropy and E0 the bare ground energy.
The expectation values are with respect to the CFT action and in the last step it is important
to notice that ⟨O⟩2 ̸= ⟨OO⟩. In fact, the term ⟨Oh(τ1)Oh′(τ2)⟩β − ⟨Oh(τ1)⟩β ⟨Oh′(τ2)⟩β =
⟨Oh(τ1)Oh′(τ2)⟩conβ represents the connected two point function of the operators O. One can
check that the higher order terms in gh have only connected diagrams as well. An easy way to
do this is to Taylor expand (up to fourth order) the function log (1− y), where

y =
∑
h

gh

ˆ β

0

dτ ⟨Oh(τ)⟩β −
1

2

∑
h,h′

ghgh′

ˆ β

0

dτ1

ˆ β

0

dτ2 ⟨Oh(τ1)Oh′(τ2)⟩β +

+
1

3!

∑
h,h′,h′′

ghgh′gh′′

ˆ β

0

dτ1

ˆ β

0

dτ2

ˆ β

0

dτ3 ⟨Oh(τ1)Oh′(τ2)Oh′′(τ3)⟩β −

− 1

4!

∑
h,h′,h′′,h′′′

ghgh′gh′′gh′′′

ˆ β

0

dτ1

ˆ β

0

dτ2

ˆ β

0

dτ3

ˆ β

0

dτ4 ⟨Oh(τ1)Oh′(τ2)Oh′′(τ3)Oh′′′(τ4)⟩β

So,

log (1− y) = −y − y2

2
− y3

3
− y4

4
,

and therefore, order by order in gh, the terms are:

O(1): -
∑
h

gh

ˆ β

0

dτ ⟨Oh(τ)⟩β.

O(2):
1

2

∑
h,h′

ghgh′

ˆ β

0

dτ1dτ2

(
⟨Oh(τ1)Oh′(τ2)⟩β − ⟨Oh(τ1)⟩β ⟨Oh′(τ2)⟩β

)
.

O(3): − 1

3!

∑
h,h′,h′′

ghgh′gh′′

ˆ β

0

dτ1dτ2dτ3

(
⟨Oh(τ1)Oh′(τ2)Oh′′(τ3)⟩β −

−3 ⟨Oh(τ1)⟩β ⟨Oh′(τ2)Oh′′(τ3)⟩conβ − ⟨Oh(τ1)⟩β ⟨Oh′(τ2)⟩β ⟨Oh′′(τ3)⟩β
)
.
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O(4): − 1

4!

∑
h,h′,h′′,h′′′

ghgh′gh′′gh′′′

ˆ β

0

dτ1dτ2dτ3dτ4

(
⟨Oh(τ1)Oh′(τ2)Oh′′(τ3)Oh′′′(τ4)⟩β −

−3 ⟨Oh(τ1)Oh′(τ2)⟩conβ ⟨Oh′′(τ3)Oh′′′(τ4)⟩conβ − 6 ⟨Oh(τ1)Oh′(τ2)⟩conβ ⟨Oh′′(τ3)⟩β ⟨Oh′′′(τ4)⟩β

−4 ⟨Oh(τ1)⟩β ⟨Oh′(τ2)Oh′′(τ3)Oh′′′(τ4)⟩conβ − ⟨Oh(τ1)⟩β ⟨Oh′(τ2)⟩β ⟨Oh′′(τ3)⟩β ⟨Oh′′′(τ4)⟩β
)
.

where ⟨Oh(τ)⟩β = ⟨Oh(τ)⟩conβ
Whence, the terms entering in the expansion of the free energy are only connected correlation

functions. So, from now on we will remove the superscript ⟨ ⟩con, but keeping in mind that
those expectation values are represented by connected diagrams. So, the free energy reads

βF = NβE0 −Ns0 +
∑
h

gh

ˆ β

0

dτ ⟨Oh(τ)⟩β −
1

2

∑
h,h′

ghgh′

ˆ β

0

dτ1dτ2 ⟨Oh(τ1)Oh′(τ2)⟩β +

+
1

3!

∑
h,h′,h′′

ghgh′gh′′

ˆ β

0

dτ1dτ2dτ3 ⟨Oh(τ1)Oh′(τ2)Oh′′(τ3)⟩β + . . .

It has been argued that one-point functions in thermal CFT are not necessarily zero and
have the constant value:

⟨Oh⟩β =
Nbh
(βJ)h

,

where the coefficients bh are fixed by the conformal two point function as follows (for τ → 0):

Gβ
c (τ) =

b∆sgn(τ)∣∣∣βJπ sin πτ
β

∣∣∣2∆
→
τ→0

b∆sgn(τ)∣∣∣∣βJπ [πτβ − 1
3!

(
πτ
β

)3
+ 1

5!

(
πτ
β

)5
+ · · ·

]∣∣∣∣2∆
=

b∆sgn(τ)

|Jτ |2∆
∣∣∣∣1− 1

3!

(
πτ
β

)2
+ 1

5!

(
πτ
β

)4
+ · · ·

∣∣∣∣2∆
=
b∆sgn(τ)

|Jτ |2∆

(
1 +

π2

3
∆

∣∣∣∣ τβ
∣∣∣∣2 + π4

90
∆(5∆ + 1)

∣∣∣∣ τβ
∣∣∣∣4 + . . .

)
.

(42)

On the other hand, using the OPE expansion19 of G(τ), gives us:

Gβ(τ) =
b∆sgn(τ)

|Jτ |2∆

(
1 +

∑
h

ch|Jτ |h ⟨Oh⟩β

)
, (43)

19The OPE expansion allows us to write

Gβ(τ) =
∑
H

CH(τ) ⟨OH⟩β =
∑
H

b∆sgn(τ)

|Jτ |2∆−H
cH ⟨OH⟩β =

b∆sgn(τ)

|Jτ |2∆
+
∑
h

b∆sgn(τ)

|Jτ |2∆−h
ch ⟨Oh⟩β ,

where in the last equality we separated the identity term ( H = 0, c0 = 1, and O0 = I) from the anomalous
dimensions terms H = h. See appendix H for more details on the OPE expansion.
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comparing both expressions, we can fix bh. For example,

Nbh0ch0 =
π2

3
∆, Nbh=4ch=4 =

π4

90
∆(5∆ + 1), · · ·

An important note here is that bh = 0 for h ̸= 2k, k ∈ Z. So, from CFT arguments the
one-point functions

⟨Ohm⟩β = 0, m = 1, 2, 3, . . .

Therefore, the free energy gets the form:

βF = NβE0 −Ns0 + βN
∑
h

ghbh
(βJ)h

− 1

2

∑
h

g2h

ˆ β

0

dτ1

ˆ β

0

dτ2 ⟨Oh(τ1)Oh(τ2)⟩β + · · ·

where the third term has only contributions from h = 2k, k ∈ N (according to the previous
analysis), the rest are zero: bh = 0.

The fourth term can be calculated explicitly by introducing a UV cutoff20 ε ∼ 1/J :

g2h

ˆ β

0

dτ1

ˆ β

0

dτ2 ⟨Oh(τ1)Oh(τ2)⟩β = Ng2hβ

ˆ β−ε

ε

dτ

(
π

βJ sin πτ
β

)2h

=
N(g2h/J

2)(βJ)

(h− 1/2)(εJ)2h−1
+
N(g2h/J

2)

(βJ)2h−2

π2h−1/2Γ(1
2
− h)

Γ(1− h)
,

where the first term represents a correction to the ground energy. Finally, we arrive at

βF = βFCFT +N
∑
h

(gh/J)bh
(βJ)h−1

− 1

2

∑
h

[
N(g2h/J

2)(βJ)

(h− 1/2)(εJ)2h−1
+
N(g2h/J

2)

(βJ)2h−2

π2h−1/2Γ(1
2
− h)

Γ(1− h)

]
+ · · ·

And using the thermodynamic relation ϵ = E/J = −∂β logZ/J = ∂β(βF/(JN)), the
expression for the energy is:

ϵ = ϵ0 −
∑
h

(gh/J)bh(h− 1)

(βJ)h
+

− 1

2

∑
h

[
(g2h/J

2)

(h− 1/2)(εJ)2h−1
− (2h− 2)(g2h/J

2)

(βJ)2h−1

π2h−1/2Γ(1
2
− h)

Γ(1− h)

]
+ · · ·

(44)

Or equivalently,

ϵ = ϵ0 +
c2

(βJ)2
+

c3
(βJ)3

+
c4

(βJ)4
+

c5
(βJ)5

+
c6

(βJ)6
+

c2h1−1

(βJ)2h1−1
+

c7
(βJ)7

+ . . . (45)

with h1 ≈ 3.773535, ϵ0 ≈ −0.0406303, c2 = 1
48
π(2 + 3π)α0 ≈ 0.198008, c3 = 1

6
π(2 + 3π)α2

0 ≈
−0.41947, and c3

(c2)2
= − 384

π(2+3π)
≈ −10.698763. Notice that the first non-integer exponent comes

from the two point function in the free energy calculation ⟨Oh1Oh1⟩ 21. Also, numerically, we
can see that terms 1/(βJ)p with p = h1, h1+1, h1+2 or h2 are absent. Therefore, it is natural
to assume that we do not expect terms with powers p = hm + n, with n = 0, 1, 2, . . . to be
present in the energy expansion.

20This cutoff is of order 1/J because at order βJ ∼ 1 the conformal limit stops working.
21Note that if any of the terms 1

(βJ)hm
existed, it would imply non-zero one point functions ⟨Ohm

⟩.
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Note. It is important to take into account that this (phenomenological) treatment is not com-
pletely clear yet, specially for the h0 case, since there are some caveats. Although, starting
from (35) gives a natural way of obtaining the observables, one has to be careful in trusting
such calculations. THAT IS WHY IT IS BETTER TO USE NUMERICS TO SOLVE THE
MODEL AND CALCULATE BOTH THE ENERGY AND THE 2-POINT CORRELATION
FUNCTION EXPANSIONS.

It is needed very high precision in the numerical results in order to test the different predic-
tions of the SYK model in a trustworthy way.

6 Chaos

22Let us first talk about semi-classical chaos: In a classical system, an easy probe of chaos is
the high dependence of the trajectories on the initial conditions (butterfly effect). A chaotic
system has nearby trajectories that diverge exponentially fast in time, viz.

∂q(t)

∂q(0)
= {q(t), p(0)}PB ∼ eλLt,

where λL is called the Lyapunov exponent and t > 0.
Considering a semi-classical quantum system (ℏ ≪ 1), we can approximate the Poisson

bracket with the commutator, i.e. { } → 1
iℏ [ ]. However, there are some caveats in this limit: 1.

Since there can be phase cancellations, we need to square the commutator and 2. We need to
take the expectation value in some state. A general choice for this is the (canonical ensemble)
thermal state, leading us to consider the quantity:

C(t) = −⟨[W (t), V (0)]2⟩β ,

where as before ⟨ ⟩β = Tre−βH/Z. Writing C(t) explicitly and using the KMS condition23 we
have:

C(t) = −⟨W (t)V (0)2W (t)⟩β − ⟨V (0)W (t)2V (0)⟩β + ⟨W (t)V (0)W (t)V (0)⟩β +
+ ⟨V (0)W (t)V (0)W (t)⟩β

= −⟨W (0)W (iβ)V (t+ iβ)2⟩β − ⟨V (−t− iβ)V (−t)W (0)2⟩β +
+ ⟨V (0)W (t)V (0)W (t)⟩β + ⟨V (0)W (t)V (0)W (t+ iβ)⟩β ,

the first two correlators are in Lorentzian time order, but the last two are not. These are
called Out-of-Time-Order (OTO) correlation functions. The typical behavior of the function
C(t) is as follows: after a time of order β, there is a region of Lyapunov growth, however when
the commutator obtains macroscopic values (around Ehrenfest time ts ∼ 1

λL
log 1

ℏ), C(t) starts
saturating exponentially to its late time average (called the Ruelle region, macroscopic average
value).

Now we can focus on studying the behavior of C(t) in a theory holographically dual to
Einstein gravity by studying certain shockwaves sent into an AdS-Schwartzschild black hole.
In summary, the growth of the Lyapunov part is a consequence of the exponential redshift near
the horizon. The result is that the four-point function behaves, at late times, as

22This section is mainly taken from Sarosi.
23Recall that ⟨A(t)B(0)⟩β = ⟨B(0)A(t+ iβ)⟩β , and for correlations of more than two operators, play with

the cyclicity of the trace.
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FVWVW ∼ β
∆2

C
e

2π
β
t.

Suggesting that we have a Lyapunov exponent of λL = 2π/β (this value is also obtained in
higher dimensional black holes and it is argued that this is the maximal Lyapunov exponent
that a chaotic quantum system with a classical limit can have).

24Let us now turn to the SY K language and consider the OTO four-point function (for times
longer that the dissipation time and shorter than the scrambling time λ−1

L ≪ t≪ λ−1
L logN):

⟨χi(0)χj(t)χi(0)χj(t)⟩β ∼ 1

N
eλLt.

Taking SD equation for the OTO 4-point function and plugging in the previous expression, it
was found by Kitaev that λL = 2π/β for βJ ≫ 1. That is, SY K saturates the maximally
chaotic bound.

7 Applications

Section mainly based on the paper by Rosenhaus (An Introduction to the SYK model).

7.1 AdS/CFT

Since the full SY K model breaks conformal invariance, then it should not be thought of as
dual to AdS2. Instead, one should consider an AdS2 embedded in a higher dimensional space
(as a near-horizon limit of an extremal (E = 0) charged Reisnner-Nordström black hole in
asymptotic AdS), while the dual of this bulk is not SY K, it may be that the IR limit is.

At low energies, SY K is dominated by the h = 2 mode, which is described by the Schwarzian
(consequence of nearly conformal invariance). On the AdS2 side, it is natural to consider Jackiw-
Teitelboim (JT) dilaton gravity. Dilaton gravity theories arise from compactifying gravity
in higher dimensions down to two with the dilaton playing the role of the size of the extra
dimension. It has been shown that dilaton gravity in AdS2 is equivalent to Schwarzian theory
(as a consequence of the pattern of symmetry breaking).

With this in mind, in principle, we know the bulk in AdS2 because we have solved the model
in the IR. Then, the dictionary works as follows:

Boundary Bulk

Ohn ∼ 1
N
χi∂

1+2n
τ χi

φn ≡ particle
m2
n = hn(hn − 1)

where the masses are chosen in such a way that they match the two-point functions of the
operators Oh.

So, in the bulk we have a tower of fields of increasing masses. The number of fields is infinite
and they are parametrized by n. However, the dual of the fermions χi is still an open question.
The ‘Bulk Theory’ can be written as

L =
∑
n

(∂φn)
2 +m2

nφ
2
n + Λnklφnφkφl + · · ·

where the couplings are, in principle, known because we have solved SYK (and use the dictio-
nary). Though, it is not clear where the set of numbers mn, Λnkl, etc. come from, i.e. there is
no presently a bulk description yet.

24This part is taken from Polchinski and Rosenhaus.
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7.2 Strange metals

Considering a lattice of SYK models, for example

L =
∑
x

∑
i

c†i,x(∂τ − µ)ci,x −
∑
⟨xx′⟩

∑
i,j

tij,xx′c
†
i,xcj,x′ −

∑
x

∑
i,j,k,l

Jijkl,xc
†
i,xc

†
j,xck,xcl,x,

where x represents the lattice site, ⟨ ⟩ sum over nearest neighbors, tij,xx′ are random hopping
couplings, and Jijkl,x is the random interaction coupling per site x. Notice that now ci,x are
complex fermions. This model exhibits features of a strongly correlated metal, with resistivity
scaling linearly with T , at high temperatures, and Fermi liquid behavior at low temperatures.

Nevertheless, there are two main limitations here: neither all-to-all interactions nor large
N are present in real metals, and this features are essential to solve the SYK model.

Figure 8: A cartoon representation of a SYK lattice of ‘quantum dots’ with quartic all-to-all
interactions, image taken from Rosenhaus (An Introduction to the SYK model).

Note. The time dependent green function determines the transport properties of a system (as
the electrical resistance and complex dielectric constant as a function of the field frequency) as
well as inelastic particle scattering processes in solids.
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A Path Integrals for fermions and Matsubara frequen-

cies

25 Let Ψ and Ψ† be two fermionic (ladder) operators, namely{
Ψ†,Ψ

}
= 1,

{
Ψ†,Ψ†} = 0, {Ψ,Ψ} = 0

and the number operator N = Ψ†Ψ. Since, N 2 = N , the possible eigenvalues for N are either
0 or 1. Therefore,

Ψ† |0⟩ = |1⟩ , Ψ |1⟩ = |0⟩ , Ψ† |1⟩ = 0, Ψ |0⟩ = 0.

Now, let’s define the state,

|ψ⟩ = |0⟩ − ψ |1⟩ ,

where ψ is a Grassmann number, this state is a fermion coherent state, because it is an eigen-
vector of all ‘annihilation’ operators, viz,

Ψ |ψ⟩ = Ψ |0⟩ −Ψψ |1⟩
= ψΨ |1⟩
= ψ |0⟩
= ψ (|0⟩ − ψ |1⟩)
= ψ |ψ⟩ .

Similarly, ⟨ψ̄|Ψ† = ⟨ψ̄| ψ̄. Note that ψ̄ is not the hermitian conjugate of ψ, we should treat
them as independent Grassmann variables, hence ⟨ψ̄| ≠ (|ψ⟩)†.

Let’s now enumerate some of the important results from Grassmann numbers before writing
the path integral:

i) ⟨ψ̄|ψ⟩ = 1 + ψ̄ψ = eψ̄ψ.

ii) Any function of n Grassmann variables can be written as a polynomial with 2n terms,
i.e. f(ψ1, ψ2, . . . , ψn) = (a1 + b1ψ1)(a2 + b2ψ2) · · · (an + bnψn).

iii) Since
´
dψ̄dψ ψ̄ψ = −1, then

´
dψ̄dψ e−aψ̄ψ = a. Therefore, considering ψ to be a column

vector of any size, ψ̄ a row vector of the same size and M a square matrix (of the size of
ψ),
´ [
dψ̄dψ

]
e−ψ̄Mψ = detM .

iv) The completeness relation:
´
dψ̄dψ |ψ⟩ ⟨ψ̄| e−ψ̄ψ = I.

v) ⟨−ψ̄| = ⟨0|+ ⟨1| ψ̄ = ⟨0| − ψ̄ ⟨1|, so that ⟨−ψ̄|ψ⟩ = 1− ψ̄ψ = e−ψ̄ψ.

vi)
´
dψ̄dψ ⟨−ψ̄|Ω |ψ⟩ e−ψ̄ψ = Tr Ω.

Now, following the path integral approach to write the partition function, we have

Z = Tr
(
e−βH

)
,

where H = H(Ψ†,Ψ) is the normal-ordered Hamiltonian. Plus, discretizing time ϵ = β/N :

25This section is taken from Shankar (RG approach to interacting fermions)
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⟨ψ̄i+1| e−ϵH |ψi⟩ ≈ ⟨ψ̄i+1| (1− ϵH(Ψ†,Ψ)) |ψi⟩
≈ ⟨ψ̄i+1| (1− ϵH(ψ̄i+1, ψi)) |ψi⟩
= ⟨ψ̄i+1|ψi⟩ e−ϵH(ψ̄i+1,ψi)

= eψ̄i+1ψie−ϵH(ψ̄i+1,ψi)

Thus, since e−βH = limN→∞ e−ϵHN , then introducing the completeness relation into every
e−ϵH and letting ψ̄N = −ψ̄1, ψN = −ψ1 (anti-symmetric boundary conditions26):

Z =

ˆ
dψ̄1dψ1 ⟨−ψ̄1| e−βH |ψ1⟩ e−ψ̄1ψ1

= lim
N→∞

ˆ N−1∏
i=1

dψ̄idψi ⟨ψ̄N | e−ϵH |ψN−1⟩ e−ψ̄N−1ψN−1 ⟨ψ̄N−1| × · · · × |ψ̄2⟩ e−ψ̄2ψ2 ⟨ψ̄2| e−ϵH |ψ1⟩ e−ψ̄1ψ1

= lim
N→∞

ˆ N−1∏
i=1

dψ̄idψi e
ψ̄NψN−1e−ϵH(ψ̄N ,ψN−1)e−ψ̄N−1ψN−1 · · · e−ψ̄2ψ2eψ̄2ψ1e−ϵH(ψ̄2,ψ1)e−ψ̄1ψ1

= lim
N→∞

ˆ N−1∏
i=1

dψ̄idψi e
∑N−1
j=1 [ψ̄j+1ψj−ψ̄jψj−ϵH(ψ̄j+1,ψj)]

= lim
N→∞

ˆ N−1∏
i=1

dψ̄idψi e

∑N−1
j=1 ϵ

[
(ψ̄j+1−ψ̄j)

ϵ
ψj−H(ψ̄j+1,ψj)

]

=

ˆ [
dψ̄dψ

]
e
´ β
0 dτ

[
∂ψ̄
∂τ
ψ−H(ψ̄,ψ)

]

=

ˆ [
dψ̄dψ

]
e−
´ β
0 dτ[ψ̄(τ) ∂ψ(τ)

∂τ
+H(ψ̄(τ),ψ(τ))].

If we turn to Fourier space, by writing27

ψ̄(τ) =
1

β

∑
n

eiωnτ ˜̄ψ(ω), ψ(τ) =
1

β

∑
n

e−iωnτ ψ̃(ω)

and apply the anti-symmetric boundary conditions:

ψ(β) = −ψ(0), ψ̄(β) = −ψ̄(0)

implies that

e±iωnβ = −1 =⇒ ωn =
(π + 2πn)

β
,

for n ∈ Z, or

ωn =
2π

β

(
n+

1

2

)
which are called Matsubara frequencies.

26The first condition is obvious, the second one is for the Fourier transforms to be well defined.
27Notice that we have written the Fourier transforms as if they were complex conjugates, but take into account

that they are not, this just ease the calculations.
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B Free two-point function and exact series in Fourier

modes

The free (zero-T ) two-point function is defined as:

G0(τ) =
1

N

N∑
i,j=1

G0
ij(τ),

where G0
ij(τ) ≡ ⟨T χi(τ)χj(0)⟩, χi(τ) = eτHχi(0)e

−τH , and H is the Hamiltonian of the theory,
which in this case is zero (non-interacting case). Therefore, χi(τ) = χi(0)− χi. Thus,

G0
ij(τ) ≡ ⟨T χi(τ)χj(0)⟩

= Θ(τ) ⟨χiχj⟩ −Θ(−τ) ⟨χjχi⟩
= Θ(τ) ⟨χiχj⟩ −Θ(−τ) (δij − ⟨χiχj)⟩
= ⟨χiχj⟩ (Θ(τ) + Θ(−τ))−Θ(−τ)δij
= ⟨χiχj⟩ −Θ(−τ)δij.

Leading to28

G0
ij(τ) =

{
⟨χiχj⟩ = −⟨χjχi⟩ , i ̸= j

1
2
−Θ(−τ), i = j

=

{
0, i ̸= j

1
2
sgn(τ), i = j

=
1

2
sgn(τ) δij

=⇒ G0(τ) =
1

2
sgn(τ).

B.1 Sums in Matsubara modes

There is a way of verifying what is the free non-zero Temperature correlator, using the discrete
Fourier expansion in Matsubara frequencies. Of course, writing it in Fourier modes allows
us to find G0(iwn) by integrating G0(τ). But, we want to calculate explicitly the sum over
frequencies, and for this, let’s start by doing some of these discrete Fourier sums to see how it
works:

The function: tanh

(
βz

2

)
=
e
βz
2 − e−

βz
2

e
βz
2 + e−

βz
2

has poles when e
βz
2 = −e−βz

2 , that is when βz =

iπ + 2inπ, i.e

z = i
2π

β

(
n+

1

2

)
= iωn,

where ωn = 2π
β

(
n+ 1

2

)
are the Matsubara frequencies for fermions.

Thus, expanding tanh

(
βz

2

)
around iωn gives,

28Noticing that the i ̸= j part is independent of τ , and using G(τ) = −G(−τ). And that χiχi =
1
2 from the

anti-commutation relations.
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tanh

(
βz

2

)
=

sinh
(
βz
2

)
cosh

(
βz
2

)
=

sinh (iβωn/2) +
β
2
cosh (iβωn/2)(z − iωn) +

(
β
2

)2
sinh (iβωn/2)

(z−iωn)2
2!

+ . . .

cosh (iβωn/2) +
β
2
sinh (iβωn/2)(z − iωn) +

(
β
2

)2
cosh (iβωn/2)

(z−iωn)2
2!

+ . . .

=
1 +

(
β
2

)2 (z−iωn)2
2!

+
(
β
2

)4 (z−iωn)4
4!

+ . . .(
β
2

)
(z − iωn) +

(
β
2

)3 (z−iωn)3
3!

+
(
β
2

)5 (z−iωn)5
5!

+ . . .

=
1 +

(
β
2

)2 (z−iωn)2
2!

+
(
β
2

)4 (z−iωn)4
4!

+ . . .(
β
2

)
(z − iωn)

[
1 +

(
β
2

)2 (z−iωn)2
3!

+
(
β
2

)4 (z−iωn)4
5!

+ . . .
]

Therefore, the residue is:

Res
z=iωn

tanh

(
βz

2

)
=

2

β
,

and by the residue theorem, we have∑
n

f(iωn) =
β

4πi

˛
C

dz tanh

(
βz

2

)
f(z),

where C is the contour along the imaginary axis enclosing the poles. The next step to calculate
the sum is to shift the contour so that the new C ′ encloses the poles of f(z) (we can always do
this because the result is independent of the contour we choose).

To continue this analysis, and since tanh
(
βz
2

)
= ±(e±βz−1)

e±βz+1
, it is easier to redo the previous

calculations for the function 1
1+e±βz

. It has poles when e±βz = −1, that is ±βz = iπ + 2πin, or

z = ±iωn
So,

1

1 + e±βz
=

1

1 + (−1)± (−1)(z − iωn)β + (−1) (z−iωn)
2

2!
β2 + . . .

=
1

∓(z − iωn)β
[
1± (z−iωn)2

2!
β + (z−iωn)3

3!
β2 . . .

]
=⇒ Res

z=iωn

1

1 + e±βz
= ∓ 1

β
.

Hence ∑
n

f(iωn) =
β

2πi

˛
C

dz
f(z)

1 + e−βz
= − β

2πi

˛
C

dz
f(z)

1 + eβz
,

we can choose which one to use, depending on f(z), the key part is that when we shift the
contour to the poles of f , the integral over the infinite part of it vanishes.

B.1.1 Examples

The sum (usually encountered in Matsubara Fourier transforms)
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1

β

∞∑
n=−∞

e−iωnτ

ω − iωn
,

with ω constant and τ ∈ [0, β] can be obtained by applying the previous complex calculation,
viz

1

β

∞∑
n=−∞

e−iωnτ

ω − iωn
=

1

2πi

˛
C

dz
1

(1 + e−βz)
e−zτ

(ω − z)

=
1

2πi

˛
C′
dz

1

(1 + e−βz)
e−zτ

(ω − z)

=
2πi

2πi
Res
z=ω

e−zτ

(1 + e−βz)(ω − z)

=
e−ωτ

1 + e−βω

=
e(β−τ)ω

1 + eβω

where in the second line, we shifted the contour C to C ′ so that we enclose the pole at z = ω.
Similarly,

1

β

∞∑
n=−∞

eiωnτ

ω − iωn
= − 1

2πi

˛
C

dz
1

(1 + eβz)
ezτ

(ω − z)

= − 1

2πi

˛
C′
dz

1

(1 + eβz)
ezτ

(ω − z)

= −Res
z=ω

ezτ

(1 + eβz)(ω − z)

= − eωτ

1 + eβω
.

From both results, we can see that the initial sum is odd with respect to τ → β− τ . Notice
the Fermi-Dirac distribution appearance in both results.

If we take the limit ω → 0, we obtain,

1

β

∞∑
n=−∞

e−iωnτ

−iωn
=

{
1
β

∑
n
e−iωnτ

−iωn = 1
2

, τ > 0
1
β

∑
n
e−iωn(−τ)

−iωn = −1
2

, τ < 0
(46)

Thus,

1

β

∞∑
n=−∞

e−iωnτ

−iωn
=

1

2
sgn(τ) = Gβ

0 (τ), (47)

this means that the Fourier transform (in Matsubara modes) of the free 2-point function is

G̃0
β
(iωn) =

1

−iωn
.

Another useful example is the sum:
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1

β

∞∑
n=−∞

e−iωnτ

ω2 + ω2
n

=
1

2ωβ

∞∑
n=−∞

(
e−iωnτ

ω − iωn
+

e−iωnτ

ω + iωn

)

=
1

2ωβ

∞∑
n=−∞

(
e−iωnτ

ω − iωn
+

eiωnτ

ω − iωn

)
=

1

2ω

(
e−ωτ

1 + e−βω
− eωτ

1 + eβω

)
=

1

2ω

(
−2 sinh (ωτ)− 2 sinh [(τ − β)ω]

4 cosh2 βω
2

)

=
1

2ω

(
cosh (ωτ) tanh

(
βω

2

)
− sinh (ωτ)

)
where in the second line, we used the fact that the sum is symmetric under ωn → −ωn (not
symmetric with respect to zero, actually ω0 = −ω−1), and in the third line we used the previous
examples.

Note. The analogous calculation for the bosonic case is similar, but with
frequencies: ωn = 2πn

β
and using the function coth

(
βz
2

)
instead of tanh .

B.2 Finite Temperature two-point function properties

We already saw that in the free (J = 0) case, Gβ
0 (τ) =

1
2
sgn(τ). Therefore, let us check some

important features of the full 2-point function at finite temperature for fermions:

Gβ
ab(τ1, τ2) =

1

Z

{
Tr
(
χa(τ1)χb(τ2)e

−βH) , τ1 > τ2
−Tr

(
χb(τ2)χa(τ1)e

−βH) , τ1 < τ2
, (48)

where χa(τ) = eτHχa(0)e
−τH , being H the Hamiltonian of the theory. This correlator can be

shown to be dependent only on one variable τ1 − τ2 (considering τ1 > τ2):

Gab(τ1, τ2) =
1

Z
Tr
(
χa(τ1)χb(τ2)e

−βH)
=

1

Z
Tr
(
eτ1Hχa(0)e

−τ1Heτ2Hχb(0)e
−τ2He−βH

)
=

1

Z
Tr
(
e(τ1−τ2)Hχa(0)e

−(τ1−τ2)Hχb(0)e
−βH)

=
1

Z
Tr
(
χa(τ1 − τ2)χb(0)e

−βH)
= Gab(τ1 − τ2, 0)

= Gab(τ1 − τ2)

(49)

From this, we can derive the Kubo-Martin-Schwinger (KMS) condition for finite-T correla-
tors:

31



Gab(τ) = − 1

Z
Tr
(
χb(0)χa(τ)e

−βH) , τ < 0

= − 1

Z
Tr
(
χb(0)e

τHχa(0)e
−τHe−βH

)
= − 1

Z
Tr
(
χb(0)e

−βHeβHeτHχa(0)e
−τHe−βH

)
= − 1

Z
Tr
(
χb(0)e

−βHe(β+τ)Hχa(0)e
−(β+τ)H

)
= − 1

Z
Tr
(
χb(0)e

−βHχa(β + τ)
)

= − 1

Z
Tr
(
χa(β + τ)χb(0)e

−βH) , (τ + β > 0)

= −Gab(β + τ)

(50)

Applying the latter property to the SYK correlator (a = b):

Gβ(τ) = −Gβ(β + τ). (51)

and

Gβ(τ) =
1

Z
Tr
(
χ(τ)χ(0)e−βH

)
, τ > 0

=
1

Z
Tr
(
eτHχ(0)e−τHχ(0)e−βH

)
=

1

Z
Tr
(
χ(0)e−(β−τ)Hχ(0)e−τHe−βHeβH

)
=

1

Z
Tr
(
e(β−τ)Hχ(0)e−(β−τ)Hχ(0)e−βH

)
=

1

Z
Tr
(
χ(β − τ)χ(0)e−βH

)
, β − τ > 0

= Gβ(β − τ).

(52)

This last result is a consequence of the particle-hole (PH) symmetry in SYK29. Therefore,
we can summarize both features as:

Gβ(τ) = −Gβ(β + τ), (KMS)

Gβ(τ) = Gβ(β − τ), (PH).
(53)

C Spin Glass (SG)

The Spin Glass is a magnetic state characterized by randomness in the alignment of spins and
in the couplings. In general, its time dependence distinguishes from other magnetic materials.
Besides, its magnetic behavior (magnetization) is as follows, as we send B⃗ → 0⃗:

1. Paramagnetic materials: M⃗ → 0⃗ in an exponential way.

29This is analogous to the Charge conjugation symmetry (C) in high energy physics, and has to do with the
fact that the fermions are Majorana, namely, they are their own antiparticle (in other words, the Lagrangian is
invariant under the exchange of particles and holes).
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2. Ferromagnetic materials: Remains magnetized at a remanent value.

3. Spin glasses: M⃗ → 0⃗ (or to a small value) in a non-exponential way.

Spin glass vs. ferromagnetic materials is analogous to a window glass vs. Crystal lattice-
based solid:

Ferromagnetic Crystal lattice-based solid
-Spins aligned (same direction). -Uniform pattern of atomic bonds.

Spin Glass Window Glass
-Spins aligned randomly. -Highly irregular atomic bond structure.

C.1 Sherington-Kirkpatrick model (SK)

The spin glass model:

HSK = −
∑
i<j

JijSiSj, (54)

where Si are the Pauli matrices at the lattice point i, Jij is the coupling of the nearest neighbors
i and j (it describes the magnetic nature of the spin-spin interaction, for example a negative Jij
value means an anti-ferromagnetic interaction), and the sum is done over all nearest neighbors.

Solving for the free energy, by the replica method, there exists a new magnetic phase below
a critical temperature Tc, this is called spin-glass phase or glassy phase, characterized by a
vanishing magnetization30 and a non-vanishing two-point function at 2 different replicas:

Q =
N∑
i=1

Sαi S
β
i ̸= 0,

with α ̸= β replica indices.
In contrast, SYK does not have a spin-glass phase at low T regime.

D Solution of SD equations in the IR

In this section, we will show that the function

G(τ) =

(
1

4πJ2

)1/4
1√
|τ |

sgn(τ) (55)

is a solution of SD equations in the IR limit.

ˆ
dτ ′Σ(τ − τ ′)G(τ ′) =

J2

4πJ2

ˆ
dτ ′

sgn(τ − τ ′)√
|τ − τ ′|3

sgn(τ ′)√
|τ ′|

=
1

4π

ˆ
dωG̃(ω)Σ̃(ω)e−iωτ ,

(56)

where

30Recall that the magnetization is the first derivative of the Free energy with respect to the field.
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G̃(ω) =

ˆ
dτ

sgn(τ)√
|τ |

eiωτ

=

ˆ 0

−∞
dτ

−eiωτ√
−τ

+

ˆ ∞

0

dτ
eiωτ√
τ

= 2

ˆ 0

∞
dy e−iωy

2

+ 2

ˆ ∞

0

dy eiωy
2

= 4i

ˆ ∞

0

dy sin
(
ωy2
)

=
4i√
ω

1

2

√
π

2
=

2i√
ω

√
π

2
.

In the last line, we used31:

ˆ ∞

0

sin (xn)dx =

ˆ ∞

0

du
sinu

n u1−1/n

=
1

n
Im

ˆ ∞

0

du u1/n−1 eiu

=
1

n
Im

ˆ ∞

0

dy
y1/n−1

(−i)1/n
e−y

=
1

n
Im

(
−1

i

)1/n

Γ

(
1

n

)
=

Γ(1/n)

n
Im
(
i1/n
)

=
Γ(1/n)

n
Im
(
ei
π
2

1
n

)
=

Γ(1/n)

n
sin
( π
2n

)
.

(57)

and

31For this calculation, one can also use

ˆ ∞

−∞
eiax

2

dx =

√
π

−ia
.

However, the result in (57) is more general.
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Σ̃(ω) =

ˆ
dτ

sgn(τ)√
|τ |3

eiωτ

=

ˆ 0

−∞
dτ

−eiωτ√
−τ 3

+

ˆ ∞

0

dτ
eiωτ√
τ 3

= 2

ˆ 0

∞
dy

e−iωy
2

y2
+ 2

ˆ ∞

0

dy
eiωy

2

y2

= 4i

ˆ ∞

0

dy
sin (ωy2)

y2

= ω
4i√
w

ˆ ∞

0

dz
sin (z2)

z2

= 4i
√
ω

ˆ ∞

0

dz

ˆ 1

0

da cos
(
az2
)

= 4i
√
ω

ˆ 1

0

da Re

ˆ ∞

0

dz eiaz
2

= 4i
√
ω

ˆ 1

0

da Re

(
1

2

√
π

−ia

)
= 4i

√
ω
1

2

√
π Re(i1/2)

ˆ 1

0

da
da√
a

= 4i
√
ω
1

2

√
π Re(ei

π
2

1
2 )2

√
a|10

= 4i
√
ω

√
π

2
.

(58)

Therefore, equation (56) becomes:

ˆ
dτ ′Σ(τ − τ ′)G(τ ′) =

J2

4πJ2

ˆ
dτ ′

sgn(τ − τ ′)√
|τ − τ ′|3

sgn(τ ′)√
|τ ′|

=
1

4π

ˆ
dω

2i√
ω

√
π

2

(
4i
√
ω

√
π

2

)
e−iωτ

= − 1

4π

8π

2

ˆ
dω e−iωτ

= −δ(τ).

(59)

So, expression (55) is a solution of SD equations in the IR.

E Eigenfunctions of the Kernel

The equation that we need to solve is:

ˆ
dτa dτb vα(τa, τb) K(τa, τb, τ3, τ4) = g(α) vα(τ3, τ4),

for the set of eigenvectors

vα(τa, τb) =
1

|τa − τb|2α
sgn(τa − τb).
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This leaves us to solve,

ˆ
dτa

ˆ
dτb

sgn(τa − τb)

|τa − τb|2α
sgn(τa − τ3)

|τa − τ3|1/2
sgn(τb − τ4)

|τb − τ4|1/2
sgn(τ3 − τ4)

|τ3 − τ4|
. (60)

Let us use the following relations:

ˆ ξ

−∞
dτ

1

(s− τ)x
1

(ξ − τ)y
=

ˆ ∞

s

dτ
1

(τ − s)y
1

(τ − ξ)x
=

1

(s− ξ)x+y−1
β(1− y, x+ y − 1) (61)

ˆ ξ

s

dτ
1

(τ − s)x
1

(ξ − τ)y
=

1

(ξ − s)x+y−1
β(1− x, 1− y), (62)

where

β(x, y) =

ˆ 1

0

dt tx−1(1− t)y−1 =
Γ(x)Γ(y)

Γ(x+ y)
= β(y, x)

Hence, dividing the integration region into 8 regions and assuming τ3 > τ4, we have:

i) τa > τb, τa > τ3, τb > τ4: ˆ
dτa

ˆ
dτb

sgn(τa − τb)sgn(τa − τ3)sgn(τb − τ4)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

=

ˆ ∞

τ3

dτa

ˆ τa

τ4

dτb
1

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

=

ˆ ∞

τ3

dτa
1

|τa − τ3|2∆

(
1

(τa − τ4)2∆+2α−1
β(1− 2∆, 1− 2α)

)
=

1

(τ3 − τ4)4∆+2α−2
β(1− 2∆, 1− 2α) β(1− 2∆, 4∆ + 2α− 2).

ii) τa > τb, τa > τ3, τb < τ4: ˆ
dτa

ˆ
dτb

sgn(τa − τb)sgn(τa − τ3)sgn(τb − τ4)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

=

ˆ ∞

τ3

dτa

ˆ τ4

−∞
dτb

(−1)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

= −
ˆ ∞

τ3

dτa
1

|τa − τ3|2∆
1

(τa − τ4)2∆+2α−1
β(1− 2∆, 2α + 4∆− 1)

= − 1

(τ3 − τ4)4∆+2α−2
β(1− 2∆, 2α− 2∆− 1) β(1− 2∆, 4∆ + 2α− 2).

iii) τa > τb, τa < τ3, τb > τ4: ˆ
dτa

ˆ
dτb

sgn(τa − τb)sgn(τa − τ3)sgn(τb − τ4)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

=

ˆ τ3

τ4

dτa

ˆ τa

τ4

dτb
(−1)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

= −
ˆ τ3

τ4

dτa
1

|τa − τ3|2∆
1

(τa − τ4)2∆+2α−1
β(1− 2∆, 1− 2α)

= − 1

(τ3 − τ4)4∆+2α−2
β(1− 2∆, 1− 2α) β(1− 2∆, 2− 2∆− 2α).
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iv) τa > τb, τa < τ3, τb < τ4:

ˆ
dτa

ˆ
dτb

sgn(τa − τb)sgn(τa − τ3)sgn(τb − τ4)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

=

ˆ τ4

−∞
dτa

ˆ τ3

τb

dτb
1

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

=

ˆ τ4

−∞
dτa

1

|τa − τ3|2∆
1

(τa − τ4)2∆+2α−1
β(1− 2α, 1− 2∆)

=
1

(τ3 − τ4)4∆+2α−2
β(1− 2α, 1− 2∆) β(1− 2∆, 4∆ + 2α− 2).

v) τa < τb, τa > τ3, τb > τ4:

ˆ
dτa

ˆ
dτb

sgn(τa − τb)sgn(τa − τ3)sgn(τb − τ4)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

=

ˆ ∞

τ3

dτb

ˆ τb

τ3

dτa
(−1)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

= −
ˆ ∞

τ3

dτb
1

|τb − τ4|2∆
1

(τb − τ3)2∆+2α−1
β(1− 2∆, 1− 2α)

= − 1

(τ3 − τ4)4∆+2α−2
β(1− 2∆, 1− 2α) β(2− 2α− 2∆, 4∆ + 2α− 2).

vi) τa < τb, τa > τ3, τb < τ4. This set of inequalities imply τ3 < τa < τb < τ4 contradicting
our assumption of τ3 > τ4. So, this region does not exist.

vii) τa < τb, τa < τ3, τb > τ4:

ˆ
dτa

ˆ
dτb

sgn(τa − τb)sgn(τa − τ3)sgn(τb − τ4)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

=

{´∞
τ4
dτb
´ τ4
−∞ dτa

1

|τa−τb|2α|τa−τ3|2∆|τb−τ4|2∆´ τ3
τ4
dτa
´∞
τa
dτb

1

|τa−τb|2α|τa−τ3|2∆|τb−τ4|2∆

=

{´ τ4
−∞ dτa

1

|τa−τ3|2∆
1

(τ4−τa)2∆+2α−1 β(1− 2∆, 2α + 2∆− 1)´ τ3
τ4
dτa

1

|τa−τ3|2∆
1

(τ4−τa)2∆+2α−1 β(1− 2α, 2α + 2∆− 1)

=
1

(τ3 − τ4)4∆+2α−2

{
β(1− 2∆, 2α + 2∆− 1) β(2− 2α− 2∆, 2α + 4∆− 2)
β(1− 2α, 2α + 2∆− 1) β(1− 2∆, 2− 2α− 2∆)

.

viii) τa < τb, τa < τ3, τb < τ4:

ˆ
dτa

ˆ
dτb

sgn(τa − τb)sgn(τa − τ3)sgn(τb − τ4)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

=

ˆ τ4

−∞
dτa

ˆ τ4

τa

dτb
(−1)

|τa − τb|2α |τa − τ3|2∆ |τb − τ4|2∆

= −
ˆ τ4

−∞
dτa

1

|τ3 − τa|2∆
1

(τ4 − τa)2∆+2α−1
β(1− 2α, 1− 2∆)

= − 1

(τ3 − τ4)4∆+2α−2
β(1− 2α, 1− 2∆) β(2− 2α− 2∆, 4∆ + 2α− 2).
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Therefore, (60) reads:

ˆ
dτa

ˆ
dτb

sgn(τa − τb)

|τa − τb|2α
sgn(τa − τ3)

|τa − τ3|1/2
sgn(τb − τ4)

|τb − τ4|1/2
sgn(τ3 − τ4)

|τ3 − τ4|

=
1

(τ3 − τ4)4∆+2α−2
[β(1− 2∆, 1− 2α) β(1− 2∆, 4∆ + 2α− 2)

−β(1− 2∆, 2α− 2∆− 1) β(1− 2∆, 4∆ + 2α− 2)

−β(1− 2∆, 1− 2α) β(1− 2∆, 2− 2∆− 2α)

+β(1− 2α, 1− 2∆) β(1− 2∆, 4∆ + 2α− 2)

−β(1− 2∆, 1− 2α) β(2− 2α− 2∆, 4∆ + 2α− 2)

+β(1− 2∆, 2α + 2∆− 1) β(2− 2α− 2∆, 4∆ + 2α− 2)

+β(1− 2α, 2α + 2∆− 1) β(1− 2∆, 2− 2∆− 2α)

−β(1− 2α, 1− 2∆) β(2− 2α− 2∆, 4∆ + 2α− 2)]

=
1

(τ3 − τ4)4∆+2α−2

(
2β

(
1

2
, 1− 2α

)
[β(1/2, 2α− 1)− β(3/2− 2α, 2α− 1)]

+β

(
1

2
, 2α− 1

2

)
[β(3/2− 2α, 2α− 1)− β(1/2, 2α− 1)]

+ β

(
1

2
,
3

2
− 2α

)
[β(1− 2α, 2α− 1/2)− β(1/2, 1− 2α)]

)
=

1

(τ3 − τ4)4∆+2α−2

[
2

√
πΓ(1− 2α)

Γ(3/2− 2α)

(√
πΓ(2α− 1)

Γ(2α− 1/2)
− Γ(3/2− 2α)Γ(2α− 1)√

π

)
+

√
πΓ(2α− 1/2)

Γ(2α)

(
Γ(3/2− 2α)Γ(2α− 1)√

π
−

√
πΓ(2α− 1)

Γ(3/2− 2α)

)
+

√
πΓ(3/2− 2α)

Γ(2− 2α)

(
Γ(1− 2α)Γ(2α− 1/2)√

π
−

√
πΓ(1− 2α)

Γ(3/2− 2α)

)]
=

1

(τ3 − τ4)4∆+2α−2

[
2πΓ(2α− 1)Γ(1− 2α)

Γ(3/2− 2α)Γ(2α− 1/2)
− 2Γ(1− 2α)Γ(2α− 1)

]
=

1

(τ3 − τ4)4∆+2α−2

[
2πΓ(2α− 1) π

sin (2πα)Γ(2α)

Γ(1− (2α− 1/2))Γ(2α− 1/2)
− 2Γ(2α− 1)

π

sin (2πα)Γ(2α)

]

=
1

(τ3 − τ4)4∆+2α−2

[
2π2

sin 2πα(2α− 1)

sin 2πα− π/2

π
− 2π

sin (2πα)(2α− 1)

]
=

1

(τ3 − τ4)4∆+2α−2

2π

sin 2πα(2α− 1)
[−1− cos (2πα)]

=
1

(τ3 − τ4)4∆+2α−2

2π

(1− 2α)

1

tanαπ
.

Thus, since τ3 > τ4,

ˆ
dτadτb vα(τa, τb)K(τa, τb, τ3, τ4) =

(−3J2)

4πJ2

1

(τ3 − τ4)1+2α−2

2π

(1− 2α)

1

tanαπ

1

τ34

= −3

2

1

(1− 2α)

1

tanαπ

1

τ 2α34
= g(α) vα(τ3, τ4),

(63)
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where

g(α) = −3

2

1

(1− 2α)

1

tanαπ

is the eigenvalue of the kernel with eigenfunction vα(τa, τb).

F Comments on Conformal Field Theory (CFT)

A CFT is a theory invariant under Conformal Group transformations, which are generated
by translations, rotations, dilatations and special conformal transformations (SCT), more pre-
cisely:

xµ → x′µ = xµ + aµ (Translations)

xµ → x′µ = ωµνx
ν (Rotations)

xµ → x′µ = λxµ (Scaling)

xµ → x′µ =
xµ − bµx2

1− 2b · x+ b2x2
(SCT ),

where a2 = aµaµ, the modulus is

x′2 =
x2

1− 2b · x+ b2x2
,

and considering two different space-time points x1 and x2:

(x′1 − x′2)
2 = x′21 − 2x′1 · x′2 + x′22

=
x21(1− 2b · x2 + b2x22)− 2 [x1 · x2 − (b · x1)x22 − (b · x2)x21 + b2x21x

2
2]

(1− 2b · x1 + b2x21)(1− 2b · x2 + b2x22)

+
x22(1− 2b · x1 + b2x21)

(1− 2b · x1 + b2x21)(1− 2b · x2 + b2x22)

=
x21 − 2x1 · x2 + x22

(1− 2b · x1 + b2x21)(1− 2b · x2 + b2x22)

=
(x1 − x2)

2

(1− 2b · x1 + b2x21)(1− 2b · x2 + b2x22)
,

therefore

|x′1 − x′2| =
|x1 − x2|

(1− 2b · x1 + b2x21)
1/2(1− 2b · x2 + b2x22)

1/2
. (64)

F.1 CFT for d ≥ 3

Starting with d ≥ 3 (the case d = 2 is particularly interesting and will be studied separately32

Let us start by counting the number of generators, since CFTd−1,1 has33:

32The case d = 1 also falls into this section and corresponds to the case of Conformal Quantum Mechanics
since time is the only dimension.

33Recall that the SO(n) group has dimension (= number of (anti-symmetric) generators) n(n−1)
2 .
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1 (dilation)+d (translations)+d (SCT )+
d(d− 1)

2
(rotations) =

(d+ 2)(d+ 1)

2
CFT generators.

Therefore, this tells us that the conformal group in (d − 1, 1) dimensions is isomorphic to the
group SO(d + 1, 1). Before studying the properties of the correlation functions, we have to
define the scaling dimension ∆ of a field operator Φ as the action of the scaling transformation
on it, that is

Φ(λx) = λ−∆Φ(x).

Now, if the metric transforms in a covariant way, namely

gµν → g′µν = Λ(x)gµν ,

to fix the value of Λ(x), we know that

xµ → x′µ = Λ(x)xµ

so that ∂x′µ

∂xν
= Λ(x)δµν . So that the determinant of the Jacobian of the conformal group

transformations gives: ∣∣∣∣∂x′∂x

∣∣∣∣ = Λ(x)d.

Thus, the transformation of a scalar field ϕ under the conformal group is:

ϕ(x) → ϕ′(x′) = Λ(x)−∆ϕ(x) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

ϕ(x). (65)

Fields that transform in such a way (covariantly) are called quasi-primary fields.

F.1.1 Conformal Invariants

Consider any set of points in a CFTd+1,1, then

i) Translation and rotation invariance implies

|x1 − x2| = invariant.

ii) Including scale invariance requires

|x1 − x2|
|x3 − x4|

= invariant.

iii) If we apply SCT to |x1 − x2|, then by (64)

|x1 − x2| →
|x1 − x2|

(1− 2b · x1 + b2x21)
1/2(1− 2b · x2 + b2x22)

1/2
.

So, the conformal invariant is composed by cross ratios, for instance:

|x1 − x2| |x3 − x4|
|x1 − x3| |x2 − x4|

,

where it is important to note that there are n
2
(n − 3) cross ratios for n distinct points34

(the expressions can be quite complicated).
34For the two independent ratios

xijxkl

xikxjl
,

xijxkl

xilxjk
, i, j, k, l all distinct
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F.1.2 Correlation functions and its constraints

In general, the n-point correlation function is given by calculating the path integral

⟨ϕ1(x1) · · ·ϕn(xn)⟩ =
1

Z

ˆ
[DΦ]Φ1(x1) · · ·Φn(xn)e

−S[Φ], (66)

where Z =
´
[DΦ]e−S[Φ].

By conformal transformations we can see that

⟨ϕ1(x
′
1) · · ·ϕn(x′n)⟩ =

1

Z

ˆ
[DΦ′]Φ′

1(x
′
1) · · ·Φ′

n(x
′
n)e

−S[Φ′]

=

∣∣∣∣∂x′∂x

∣∣∣∣−∆1/d

x=x1

· · ·
∣∣∣∣∂x′∂x

∣∣∣∣−∆n/d

x=xn

1

Z

ˆ
[DΦ]Φ1(x1) · · ·Φn(xn)e

−S[Φ]

=

∣∣∣∣∂x′∂x

∣∣∣∣−∆1/d

x=x1

· · ·
∣∣∣∣∂x′∂x

∣∣∣∣−∆n/d

x=xn

⟨ϕ1(x1) · · ·ϕn(xn)⟩ ,

where in the second line both the action and the functional measure are conformally invariant.
Equivalently,

⟨ϕ1(x1) · · ·ϕn(xn)⟩ =
∣∣∣∣∂x′∂x

∣∣∣∣∆1/d

x=x1

· · ·
∣∣∣∣∂x′∂x

∣∣∣∣∆n/d
x=xn

⟨ϕ1(x
′
1) · · ·ϕn(x′n)⟩ . (67)

Start with 1-point function. If we apply the invariance under rotations and translations, we
then have

⟨ϕ(x)⟩ = h (|x|) ,

now using the rescaling covariance, we require

h (|x|) = λ∆h (λ|x|)

to fulfill this condition, h(|x|) should be a polynomial in |x|, namely

⟨ϕ(x)⟩ = C

|x|∆
.

Finally, let’s use (64) and (67):

C

|x|∆
=

C

|x|∆
(1− 2b · x+ b2x2)∆/2

(1− 2b · x+ b2x2)∆
,

since ∆ can have any value (scaling dimension of the field), this expression is satisfied only if
C = 0. Hence,

⟨ϕ(x)⟩ = 0. (68)

Let us see what happens to the two point function. If we apply the invariance under
rotations and translations, we then have

we have
(
n
2

)
= n(n−1)/2 possible xij terms and

(
n−2
2

)
= (n−2)(n−3)/2 possible xkl, then since the denominator

is fixed once chosen the numerator, we have to divide by all possibilities of the denominator (to not overcount)
which are n− 1 for fixed i and n− 2 for fixed j. So the final expression is n(n− 3)/2.
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⟨ϕ1(x1)ϕ2(x2)⟩ = h (|x1 − x2|) ,

now using the rescaling covariance, we require

h (|x1 − x2|) = λ∆1+∆2h (λ|x1 − x2|)

to fulfill this condition, h(|x|) should be a polynomial in |x|, namely

⟨ϕ1(x1)ϕ2(x2)⟩ =
C∆1∆2

|x1 − x2|∆1+∆2
.

Finally, let’s use (64) and (67):

C∆1∆2

|x1 − x2|∆1+∆2
=

C∆1∆2

|x1 − x2|∆1+∆2

(1− 2b · x1 + b2x21)
(∆1+∆2)/2(1− 2b · x2 + b2x22)

(∆1+∆2)/2

(1− 2b · x1 + b2x21)
∆1(1− 2b · x2 + b2x22)

∆2
,

from this last expression, for C∆1∆2 ̸= 0, we have ∆1 + ∆2 = 2∆1 and ∆1 + ∆2 = 2∆2, that
is ∆1 = ∆2. Notice that we can rescale the operators ϕ in such a way that the coefficient
C∆1∆2 = 1. In conclusion, the 2-point function in a CFT for a (quasi-primary) scalar field is

⟨ϕ1(x1)ϕ2(x2)⟩ =
1

|x1 − x2|2∆1
δ∆1,∆2 . (69)

Finally, let’s study in a similar fashion the 3-point function. So, covariance under rotations,
translations and scaling gives

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ =
∑
a,b,c

a+b+c=∆1+∆2+∆3

Cabc
∆1∆2∆3

|x1 − x2|a |x2 − x3|b |x1 − x3|c
,

using (64) and (67), we have

Cabc
∆1∆2∆3

|x1 − x2|a |x2 − x3|b |x1 − x3|c
=

Cabc
∆1∆2∆3

|x1 − x2|a |x2 − x3|b |x1 − x3|c
(γ1γ2)

a/2(γ2γ3)
b/2(γ1γ3)

c/2

γ∆1
1 γ∆2

2 γ∆3
3

,

where γi = 1− 2b · xi + b2x2i . Then, for non-zero C
abc
∆1∆2∆3

, we require

a+ c = 2∆1, a+ b = 2∆2, b+ c = 2∆3, a+ b+ c = ∆1 +∆2 +∆3,

whose unique solution is a = ∆1 +∆2 −∆3, b = ∆2 +∆3 −∆1, c = ∆1 +∆3 −∆2. Hence,

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ =
C∆1∆2∆3

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1 |x1 − x3|∆1+∆3−∆2
. (70)

Note that C∆1∆2∆3 is unique and cannot be fixed to be 1 since the fields were already rescaled
to fix C∆1∆2 to unity.

If we want to calculate n-point functions for n ≥ 4, we have to consider the n(n − 3)/2
cross-ratios, since they are invariants of the conformal group35. So, for the 4-point function,
the best we can do is to argue that it has the form:

35For the n < 4 case, we cannot form cross ratios, so the procedure is the one followed before.

42



⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ = h

(
|x12||x34|
|x13||x24|

,
|x12||x34|
|x14||x23|

) 4∏
i<j

|xij|∆/3−∆i−∆j , (71)

where ∆ =
∑4

i ∆i, xij = xi − xj and the function h(u, v) is not simply fixed by conformal
invariance.

F.2 CFT for d = 2

MAIN COMMENTS ON THIS!!

G Two-point function corrections

In this section, we calculate in detail the corrections of G(τ) from the perturbed action ISY K =
ICFT + Ig,O. So, let us start with the first order correction:

δ(1)Gh(τ12) = −gh
ˆ ∞

−∞
dτ3

chb
∆sgn(τ12)

|Jτ12|2∆−h|Jτ13|h|Jτ23|h
.

Without loss of generality, let us assume that τ1 > τ2, then the possible integrals we can
have are:

• If τ2 > τ3, the integral becomes,

−gh
ˆ ∞

−∞
dτ3

chb
∆sgn(τ12)

|Jτ12|2∆−h|Jτ13|h|Jτ23|h
= −ghchb

∆

J2∆+h

ˆ τ2

−∞
dτ3

1

(τ12)2∆−h(τ13)h(τ23)h

= − ghchb
∆

J2∆+h(τ12)2∆−h

ˆ τ2

−∞
dτ3

1

τh13τ
h
23

= − ghchb
∆

J2∆+hτ 2∆+h−1
12

β(1− h, 2h− 1)

= − ghchb
∆J−1

(Jτ12)2∆(Jτ12)h−1
β(1− h, 2h− 1).

• If τ2 < τ3 and τ1 > τ3, we have,

−gh
ˆ ∞

−∞
dτ3

chb
∆sgn(τ12)

|Jτ12|2∆−h|Jτ13|h|Jτ23|h
= −ghchb

∆

J2∆+h

ˆ τ1

τ2

dτ3
1

(τ12)2∆−h(τ13)h(τ32)h

= − ghchb
∆

J2∆+h(τ12)2∆−h

ˆ τ1

τ2

dτ3
1

τh13τ
h
32

= − ghchb
∆

J2∆+hτ 2∆+h−1
12

β(1− h, 1− h)

= − ghchb
∆J−1

(Jτ12)2∆(Jτ12)h−1
β(1− h, 1− h).
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• If τ3 > τ1 > τ2, the integral becomes,

−gh
ˆ ∞

−∞
dτ3

chb
∆sgn(τ12)

|Jτ12|2∆−h|Jτ13|h|Jτ23|h
= −ghchb

∆

J2∆+h

ˆ ∞

τ1

dτ3
1

(τ12)2∆−h(τ31)h(τ32)h

= − ghchb
∆

J2∆+h(τ12)2∆−h

ˆ ∞

τ1

dτ3
1

τh31τ
h
32

= − ghchb
∆

J2∆+hτ 2∆+h−1
12

β(1− h, 2h− 1)

= − ghchb
∆J−1

(Jτ12)2∆(Jτ12)h−1
β(1− h, 2h− 1),

where to solve the integrals, we made use of (61) and (62). Thus,

δ(1)Gh(τ12) = − ghchb
∆J−1

|Jτ12|2∆|Jτ12|h−1
[2β(1− h, 2h− 1) + β(1− h, 1− h)]

= −Gc(τ12)
ghchJ

−1

|Jτ12|h−1

[
2Γ(1− h)Γ(2h− 1)

Γ(h)
+

Γ(1− h)Γ(1− h)

Γ(2− 2h)

]
= −Gc(τ12)

ghchJ
−1

|Jτ12|h−1
Γ(1− h)

[
2Γ(2h)

(2h− 1)Γ(h)
− π

sin πh

sin 2πh

π(2h− 1)

Γ(2h)

Γ(h)

]
= −Gc(τ12)

ghchJ
−1

|Jτ12|h−1

π

sinπh

Γ(2h)

(2h− 1)Γ(h)2

[
2− sin 2πh

sin πh

]
= −Gc(τ12)

ghchJ
−1

|Jτ12|h−1

2π

sinπh

Γ(2h)

(2h− 1)Γ(h)2
[1− cos πh]

= −Gc(τ12)
ghchJ

−1

|Jτ12|h−1

π

2 sin πh
2
cos πh

2

Γ(2h)

(h− 1/2)Γ(h)2

[
2 sin2 πh

2

]
= −Gc(τ12)

ghchJ
−1

|Jτ12|h−1

Γ(2h)

(h− 1/2)Γ(h)2
π tan

πh

2

= −Gc(τ12)
αh

|Jτ12|h−1
,

where αh = ghchJ
−1 Γ(2h)

(h−1/2)Γ(h)2
π tan πh

2
, or replacing ch:

α2
h =

g2h
J2

1

(q − 1)b k′(h)

π tan πh
2

(h− 1/2)

Γ(2h)

Γ(h)2
.

Hence,

G(τ) = Gc(τ)

[
1−

∑
h

αh
|Jτ |h−1

+ · · ·

]
.

For the second order corrections, we need to solve

δ(2)Gh1,h2(τ12) =
∑
h

ˆ ∞

−∞
dτ3

ˆ ∞

−∞
dτ4

chch,h1,h2b
∆sgn(τ12)|τ14|h12

|Jτ12|2∆|Jτ34|h1+h2|τ13|h12
zh 2F1(h, h+ h12, 2h, z),

where z = τ12τ34
τ13τ24

and h12 = h1−h2. The OPE coefficients ch and ch,h1,h2 are fixed by the 3-point
functions ⟨χχOh⟩ and ⟨Oh1Oh2Oh⟩, respectively. Therefore, according to Tarnopolsky, et al:

δ(2)Gh1,h2(τ) = −Gc(τ)
ah1h2αh1αh2
|Jτ |h1+h2−2

.
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Leading us to:

G(τ) = Gc(τ)

[
1−

∑
m

αm
|Jτ |hm−1

−
∑
m,n

amnαmαn
|Jτ |hm+hn−2

−
∑
m,n,p

amnpαmαnαp
|Jτ |hm+hn+hp−3

− · · ·

]
, (72)

where the first values for amn and amnp are

a00 =
(2∆ + 1)(2− 2∆− cos 2π∆)

8∆cos2 π∆
a000 =

(∆ + 1)(2∆ + 1)(6∆− 8 + cos 2π∆)

24∆2 cos2 π∆
.

H OPE expansion

The Operator Product Expansion (OPE) is an axiom used to define the product of fields as a
sum over the same fields. It offers a non-perturbative approach to QFT. Explicitly, it reads:

Oh1(τ1)Oh2(τ2) =
∑
h

Ch1h2h
|τ12|h1+h2−h

(
1 +

1

2
τ12 ∂τ2 + · · ·

)
Oh(τ2)

=
∑
h

Ch1h2h
|τ12|h1+h2−h

Ch1h2h(τ12, ∂τ2)Oh(τ2).

(73)

That is, it is a sum of primaries and descendants (h runs over all the dimensions including
the identity operator, i.e. h = 0). The coefficients Ch1h2h(τ12, ∂τ2) are the generators of the
descendants and, together with Ch1h2h, are fixed by the functional form of the three-point
function.

As an example, that we need, the two-point function G is then written (assuming τ1 > τ2):

Gβ(τ12) =
1

N
⟨Tχi(τ1)χi(τ2)⟩β =

1

N
⟨χi(τ1)χi(τ2)⟩β

=
∑
h

ch sgn(τ12)

|τ12|2∆−h ⟨Ch(τ12, ∂τ2)Oh(τ2)⟩β .
(74)

If we take τ1 = τ and τ2 = 0, then

Gβ(τ) =
∑
h

ch sgn(τ)

|τ |2∆−h Ch(τ) ⟨Oh⟩β

=
b∆ sgn(τ)

|Jτ |2∆
∑
h

ch |Jτ |h ⟨Oh⟩β .
(75)
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