
Complex SYK Comments

June 20, 2022

This series of notes are compiled from 2 main papers: Gu, Kitaev, Sachdev and Tarnopol-
sky (Notes on the Complex SYK) and Bulycheva (A Note on the Complex SYK model with
fermions).

1 The model

The complex Sachdev-Ye-Kitaev (cSYK) model is a generalization of the Majorana SYK one,
where the N fermions are now complex operators (fields). For q−interactions we have that the
Hamiltonian has the form:

HcSY K =
∑

j1<···<jq/2,
k1<···<kq/2

Jj1...jq/2,k1...kq/2A
{
ψ†
j1
. . . ψ†

jq/2
ψk1 . . . ψkq/2

}
, (1)

where A{. . . } denotes the antisymmetrized product of operators, the couplings Jj1...jq/2,k1...kq/2
have zero mean and variance:∣∣∣Jj1...jq/2k1...kq/2∣∣∣2 = J2 (q/2)!(q/2− 1)!

N q−1

and the operators ϕj obey the anti-commutation relations:{
ψ†
j , ψk

}
= ψ†

jψk + ψkψ
†
j = δjk. (2)

The antisymmetrized Hamiltonian makes the particle-hole symmetry explicit, i.e. HcSY K

is invariant under ψj ↔ ψ†
j . Furthermore, there is an additional symmetry that the Majorana

SYK does not possess: U(1) global. To see this, we perform the global transformation of the
fields ψj → eiαψj and ψ†

j → e−iαψ†
j . Since this model is one-dimensional (no space), then the

corresponding conserved charge is

Q =
∂L
∂ψ̇j

∂ψj

∂α
+
∂L

∂
˙
ψ†
j

∂ψ†
j

∂α

= iψ†
jψj − iψjψ

†
j = iA

{
ψ†
jψj

}
= 2i

(
ψ†
jψj −

N

2

)
=⇒ Q̂ = ψ†

jψj −
N

2
.
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This charge is related to the UV asymmetry of the two-point function, to show this consider
τ1− τ2 = τ . In the UV regime (|τ | ≪ 1/J), the theory is free and the Hamiltonian is zero (non-
interacting case), so ψj(τ) = eτHψj(0)e

−τH = ψj(0) = ψj. Therefore, the zero-temperature free
two-point function reads

G0(τ1, τ2) = G0(τ1 − τ2) = G0(τ)

= − 1

N

∑
j,k

⟨Tψj(τ)ψ
†
k(0)⟩

= − 1

N

∑
j,k

[
Θ(τ) ⟨ψjψ

†
k⟩ −Θ(−τ) ⟨ψ†

kψj⟩
]

=
1

N

∑
j,k

[
⟨ψ†

kψj⟩ (Θ(−τ) + Θ(τ))−Θ(τ)δjk

]
=

⟨Q̂⟩
N

+
1

2
−Θ(τ)

=⇒ G0(τ) =
⟨Q̂⟩
N

− sgn(τ)

2
.

Therefore, the exact two-point function has as UV limits1: G(0+) = Q − 1
2
and G(0−) =

Q+ 1
2
, with Q = ⟨Q̂⟩

N
. Which is the same as writing:

G(0+) = −1

2
+Q G(β−) = −1

2
−Q, (3)

where we can see the UV asymmetry in an explicit form.
Let us focus on the q = 4 case, the model reduces to:

HcSY K =
∑
j1<j2,
k1<k2

Jj1j2,k1k2 A
{
ψ†
j1
ψ†
j2
ψk1ψk2

}
, (4)

2 Thermodynamics of cSYK

First, the effective action for this model is now2:

IcSY K ≡ Ieff
N

= − log det (−∂τ1δ(τ1, τ2) + µδ(τ1, τ2)− Σ(τ1, τ2))

−
ˆ
dτ1dτ2

[
Σ(τ1, τ2)G(τ2, τ1) +

J2

q
(−G(τ1, τ2)G(τ2, τ1))

q
2

]
.

(5)

Note. The complex-SYK action seems to be twice the Majorana SYK one. Naively, one can
see this relation as follows: NSY K = 2NcSY K (every field in cSYK has two real components),

1In this case, we calculated for the zero-T case, although for finite temperatures the behavior is the same,
see Appendix A

2The logarithmic part comes from recalling that for two independent Grassmann variables ψ̄ and ψ
ˆ
dψ̄dψe−aψ̄ψ =

ˆ
dψ̄dψ(1− aψ̄ψ) = a.

Also notice that the −∂τ comes from the convention in the definition of the two-point function, in this case
G(τ1, τ2) = − 1

N

∑
j ψj(τ1)ψ

†
j (τ2).

2



then NSY KISY K = NcSY KIcSY K, which implies IcSY K = 2ISY K and there is no 1/2 factor in
front of the cSYK action as it is in the Majorana SYK one.

From this, we can obtain the Schwinger-Dyson (SD) equations, which again in the large N
limit are dominated by the saddle point solution3:

∂τG(τ)− µG(τ) +

ˆ
dτ ′Σ(τ − τ ′)G(τ ′) = −δ(τ)

Σ(τ) = J2G(τ)
q
2G(β − τ)

q
2
−1,

(6)

where we have used G(β − τ) = −G(−τ) (KMS condition).

From this action, we can have the partition function − logZ =
Ieff
N

and all the thermo-
dynamics of the model. Therefore, since Ieff is only a function of βJ , then β∂β = J∂J , so
that

−βE = β∂β(−βΦ/N) = J∂J(−βΦ/N) = J∂J(−Ieff/N)

= 2
J2

q

ˆ
dτ1dτ2 (−G(τ1, τ2)G(τ2, τ1))

q
2

= 2
J2β

q

ˆ β

0

dτ (−G(τ)G(−τ))
q
2

= 2
J2β

q

ˆ β

0

dτ (G(τ)G(β − τ))
q
2

= −2β

q
lim
τ→0+

[(µ− ∂τ )G(τ)]

=⇒ E =
2

q
lim
τ→0+

[(µ− ∂τ )G(τ)] ,

(7)

where Φ
N

= − 1
β
logZ =

Ieff
βN

is the Grand potential per species and in the last line we used SD

equations (for τ ̸= 0) in the form:

J2

ˆ
dτ ′G(τ − τ ′)

q
2 (−G(τ ′ − τ))

q
2
−1G(τ ′) = −∂τG(τ) + µG(τ),

so that if τ → 0+:

−J2

ˆ
dτ ′(−G(−τ ′))

q
2G(τ ′)

q
2 = lim

τ→0+
[µG(τ)− ∂τG(τ)] .

Using (3), we can write the energy per unit coupling as

ϵ ≡ E

J
=

2

Jq

[
µG(0+)− lim

τ→0+
∂τG(τ)

]
=

2

Jq

[
µ

(
Q− 1

2

)
− lim

τ→0+
∂τG(τ)

]
. (8)

As in the Majorana SYK case, logZ = ϕ ≡ −βΦ
N

= − Ieff
N

is only a function of βJ and thus

βE = −β∂βϕ(βJ) = −J∂Jϕ(βJ) = −Jβϕ′(βJ),

or equivalently,

ϵ = −ϕ′(βJ).
3A small note in the derivation is that the saddle point solutions are functional derivatives, that is

δG(τ1, τ2)

δG(τ3, τ4)
= δ(τ1 − τ3)δ(τ2 − τ4).
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3 Conformal two-point function

Focusing in the IR regime of the SD equations (6), we can safely ignore the UV term σ(τ1, τ2) =
δ′(τ1, τ2)− µδ(τ1, τ2) and obtain the conformal solution in the zero-temperature case:

G0
c(±τ) = ∓e±πEb∆(Jτ)−2∆, (9)

where the parameter E depends implicitly on µ and takes into account the asymmetry of the
two-point function solution and J |τ | ≫ 1. In a similar fashion, we can introduce the parameter
θ that plays the same role as E but in the frequency domain (0 < ω ≪ J , IR limit):

G̃0
c(±iω) = ∓ie∓iθ

√
Γ(2− 2∆)

Γ(2∆)
b∆− 1

2

(ω
J

)2∆−1

.

These two spectral asymmetry parameters are related by the following relation:

e−2iθ =
cosπ(∆ + iE)
cosπ(∆− iE)

, e2πE =
sin (π∆+ θ)

sin (π∆− θ)
(10)

this imposes a restriction for θ, being that −π∆ < θ < π∆. Besides, the constant b can be
related to both E and θ as follows

b =
1− 2∆

2π
· sin (2π∆)

2 cosπ(∆ + iE) cosπ(∆− iE)
=

1− 2∆

2π
· 2 sin (π∆+ θ) sin (π∆− θ)

sin 2(π∆)
. (11)

Notice that when µ = 0 then E = θ = 0 and we recover the usual Majorana two-point function
and its corresponding expression of b.

This solution can be extended to the non-zero temperature case, obtaining

Gβ
c (τ) = −b∆

(
βJ

π
sin

πτ

β

)−2∆

e2πE(
1
2
− τ

β ), βJ ≫ 1, τ ∈ [0, β]. (12)

Since the spectral parameters are unknown, a way to obtain the value of E is to solve
numerically the SD equations and fit it with the expression (12) for large βJ values. The
solution is shown in Figure 1.

Figure 1: Two-point function solution (−G(τ)) as a function of the imaginary time τ ∈ [0, β]
with µ = 1.75 and βJ = 200π. The red doted line is the exact solution of the SD equations
and the green continuous line is the conformal one.
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A first question to ask is if this conformal solution can be extrapolated to higher energies
with the IR parameter E being a function of the UV one µ.

4 Eigenvalues of the Kernel

As in the Majorana SYK formalism, the diagonalization of the kernel is necessary to know
the corresponding scaling dimensions of the operators in the model. Doing so is not a trivial
calculation, therefore we will write the steps of obtaining the eigenvalues of K(τ1, τ2; τ3, τ4) :

i. Given the conformal SL(2,R) generators:

L
(τ)
0 = −τ∂τ −∆

L
(τ)
−1 = −∂τ

L
(τ)
1 = −τ 2∂τ − 2τ∆,

the kernel commutes with these conformal generators, namely,(
L
(1)
i + L

(2)
i

)
K(τ1, τ2; τ3, τ4) = K(τ1, τ2; τ3, τ4)

(
L
(3)
i + L

(4)
i

)
.

Then, the kernel also commutes with the Casimir:

C(12) =
(
L
(1)
0 + L

(2)
0

)2
− 1

2

{
L
(1)
−1L

(2)
−1, L

(1)
1 L

(2)
−1

}
and thus, both K and C(12) are simultaneously diagonalizable.

ii. The Casimir is diagonalized by conformal three-point functions. In particular, we are
interested in correlation functions of the form of 2 complex conjugated fermions of di-
mension ∆ and 1 bosonic operator of dimension h, viz.

⟨ψj(τ1)ψ
†
j(τ2)Oh(τ0)⟩ .

Depending on the operator Oh, the three-point function can be either symmetric or anti-
symmetric under the exchange of fermions (take Oh = ψ†ψ or Oh = I, for instance).
In general, the 3-point function can be written as a sum of symmetric and anti-symmetric
parts (CON RESPECTO A QUE?), i.e.

1

N
⟨ψj(τ1)ψ

†
j(τ2)Oh(τ0)⟩ = fA

h (τ1, τ2, τ0) + ifS
h (τ1, τ2, τ0)

= esgn(τ12)πEb∆
cAh sgn(τ12) + icShsgn(τ10)sgn(τ20)

|Jτ12|2∆−h|Jτ10|h|Jτ20|h
,

where c
A/S
h are determined by solving the eigenvalue equation for the kernel with4 kA/S(h) =

1. CHEQUEAR!!!

iii. Using the three-point functions as eigenfunctions of the Casimir give us the eigenvalues
h(h− 1), or equivalently

C(12) ⟨ψj(τ1)ψ
†
j(τ2)Oh(τ0)⟩ = h(h− 1) ⟨ψj(τ1)ψ

†
j(τ2)Oh(τ0)⟩ ,

thus, they are eigenfunctions of the kernel as well.

4The values for cAh are obtained in the Majorana notes, and the ones for cSh are shown in the appendix B.
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iv. To find the corresponding eigenvalues of the kernel, separate it as a symmetric and an
anti-symmetric operator, depending if it acts on fS

h or fA
h , respectively

5.

Starting with the anti-symmetric case KA, we need to solve

ˆ
dτ3

ˆ
dτ4K

A(τ1, τ2, τ3, τ4)f
A
h (τ3, τ4, τ0) = kA(h)fA

h (τ1, τ2, τ0).

This eigenvalue equation was already solved in the Maldacena and Stanford paper, so the
result is

kA(h, q) = −(q − 1)
Γ
(

3
2
− 1

q

)
Γ
(
1− 1

q

)
Γ
(

1
2
+ 1

q

)
Γ
(

1
q

) Γ
(

1
q
+ h

2

)
Γ
(

3
2
− 1

q
− h

2

) Γ
(

1
2
+ 1

q
− h

2

)
Γ
(
1− 1

q
+ h

2

) , (13)

which is the result for the Majorana SYK case.

Similarly, the for the symmetric case KS

ˆ
dτ3

ˆ
dτ4K

S(τ1, τ2, τ3, τ4)f
S
h (τ3, τ4, τ0) = kS(h)fA

S (τ1, τ2, τ0),

gives

kS(h, q) =
1

π

Γ
(
1− 2

q

)
Γ
(

2
q
− 1
)Γ(2

q
− h

)
Γ

(
2

q
+ h− 1

)(
sin πh+ sin

(
2π

q

))
. (14)

From both expressions, we can see that there are two types of scaling dimensions (given by
solving k(h) = 1):

hAm = 1 + 2m+ 2∆+ ϵAm, hSm = 2m+ 2∆+ ϵSm, m ≥ 0. (15)

Now, to write down the form of the primary operators, we see that there is a U(N) symmetry
in the effective action (5). This is easier to see if we consider the two-point function as a vector
product, i.e. G ∼ ψ†ψ and

ψ =


ψ1

ψ2
...
ψN

 .

With this symmetry and since, for large value of m, the scaling dimensions have the form

hAm = 1 + 2m+ 2∆, hSm = 2m+ 2∆,

then, naively

OhA
m
= ψ†

j∂
2m+1
τ ψj, OhS

m
= ψ†

j∂
2m
τ ψj.

5The symmetric and anti-symmetric kernels differ by a factor of (q − 1), meaning:

KA(τ1, τ2; τ3, τ4) = (q − 1)KS(τ1, τ2; τ3, τ4) = −J2(q − 1)G(τ1, τ3)G(τ2, τ4)G(τ3, τ4)
q−2.
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Although, the real form should be

OhA
m
=

N∑
i=1

2m+1∑
k=0

dAmk∂
k
τψ

†
j(τ)∂

2m+1−k
τ ψj(τ), OhS

m
=

N∑
i=1

2m∑
k=0

dSmk∂
k
τψ

†
j(τ)∂

2m−k
τ ψj(τ), (16)

where the coefficients d
A/S
mk are chosen in such a way that the operators are primary.

If we consider the hA0 = 2 and hS0 = 0 modes, we have the following operators:

OhA
0
= ψ†

j∂τψj, OhS
0
= ψ†

jψj.

We can essentially identify OhA
0
with the kinetic term in the Hamiltonian of the theory and

OhS
0
with the U(1) conserved charge Q.

Going back to the expressions for the eigenvalues of the kernel, we can see from (13) and
(14) that kA/S(h, q) = kA/S(1 − h, q). Therefore, it is conventional to use this symmetry to
obtain only positive dimensions of the primaries. We thus identify the charge with the h = 1
mode.

It is interesting to see what are the first scaling dimensions in both the symmetric and
anti-symmetric primary operators, to do this we solve numerically kA/S(h, q) = 1 and extract
from it the desired dimensions, see Figure 2. The first non-integer dimensions are6:

hA1 (4) ≈ 3.773535618638, hA2 (4) ≈ 5.679458989211, hA3 (4) ≈ 7.631970759041.

hS1 (4) ≈ 2.645744034604, hS2 (4) ≈ 4.577673896311, hS3 (4) ≈ 6.552472559916.

Figure 2: Scaling dimension as a function of q, from here we can extract the first non-integer
values of hA (left) and hS (right) by solving kA/S(h, q) = 1, respectively.

5 cSYK phenomenological approach

In the regime close to the IR (strong coupling or low temperatures), we can consider the cSYK
as a CFT plus a perturbation given by the infinite set of irrelevant primaries:

IcSY K = ICFT +
∑
h

gh

ˆ
dτOA/S

h (τ), (17)

6This solutions are for the case θ = 0, that is µ = 0. In general, the scaling dimensions depend on θ since
kA/S = kA/S(h, q, θ). See Appendix D
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where the sum runs over all the scaling dimensions h
A/S
0 , h

A/S
1 , h

A/S
2 , . . . and gh is the pertur-

bative coupling. Following the same calculations as in the Majorana SYK document, we obtain
for the two-point function:

G(τ12) = G0
c(τ12) +

∑
h

gh

ˆ
dτ3

1

N
⟨ψj(τ1)ψ

†
j(τ2)Oh(τ3)⟩−

− 1

2

∑
h,h′

ghgh′

ˆ
dτ3

ˆ
dτ4

1

N
⟨ψj(τ1)ψ

†
j(τ2)Oh(τ3)Oh′(τ4)⟩+ · · ·

(18)

Giving us the zero temperature, up to third order correction7, G(τ)

G(τ) = G0
c(τ)

[
1−

∑
h

αhvh
|Jτ |h−1

−
∑
h,h′

ahh′αhαh′

|Jτ |h+h′−2
−
∑

h,h′,h′′

ahh′h′′αhαh′αh′′

|Jτ |h+h′+h′′−3
− · · ·

]
, (19)

where the coefficients αh are unknown (depend on gh),

vhA/S(θ) =
1

1 + (2∆− 1) sin (πh)
sin (2π∆)

(
sin (2θ)

sin (2π∆)
(2∆− 1− cos (πh))±

√
P

1 + sin (2θ)
sin (2π∆)

+ (2∆− 1) sin (πh−2θ)
sin (2π∆)

)
,

P = sin (2θ)2
(
1− sin (πh)2

sin (2π∆)2

)
+

(
cos (2θ) + (2∆− 1)

sin (πh)

sin (2π∆)

)2

and

ahh′ = −(1−WΣ(h+ h′ − 1)WG)
−1
[
F (h+ h′ − 1)−1 (F (h)vh · F (h′)vh′)+

+
1

8
(q − 2)WΣ(h+ h′ − 1) (q(vh + vh) · (vh′ + vh′)− 4vh · vh′)

]
,

with

WΣ(h) =
Γ(2∆− 1 + h)Γ(2∆− h)

Γ(2∆)Γ(2∆− 1) sin (2π∆)

(
sin (πh+ 2θ) − sin (2π∆) + sin (2θ)

− sin (2π∆)− sin (2θ) sin (πh− 2θ)

)
WG =

(
q/2 q/2− 1

q/2− 1 q/2

)
F (h) = −i

√
Γ(2∆)b

Γ(2− 2∆)
Γ(2− 2∆− h)

(
eiθ 0
0 −e−iθ

)(
i2−2∆−h i2∆+h−2

i2∆+h−2 i2−2∆−h

)(
eπE 0
0 −e−πE

)
.

The notation vh = (v+h , v
−
h )

T , vh · vh′ = (v+h v
+
h′ , v

−
h v

−
h′)T , and vh = (v−h , v

+
h )

T .
To generalize this result to the finite temperature case, we first rewrite the conformal two

point function in the interval τ ∈ [−β, β]:

Gβ
c (τ) = − b∆sgn(τ)∣∣∣βJπ sin πτ

β

∣∣∣2∆ esgn(τ)πEe−
2πE
β

τ . (20)

7This part is taken from Tarnopolsky, et. all. (Excitation spectra of quantum matter without quasiparticles
I: Sachdev-Ye-Kitaev models).
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As before, the corrections now are integrals in the interval [0, β] and the expectation values
are the thermal ones, meaning ⟨ ⟩ = ⟨ ⟩β. Thus,

δhG(τ) = δhG
A(τ) + sgn(τ)δhG

S(τ)

= −Gβ
c (τ)

αh

(βJ)h−1

[
1

2
(v+

hA + v−
hA)f

A
h (τ) + sgn(τ)

1

2
(v+

hS − v−
hS)f

S
h (τ)

]
,

(21)

where

fA
h (τ) =

(2π)h−1Γ(h)2

2 sin πh
2
Γ(2h− 1)

(
Ah

(
ei

2πτ
β

)
+ Ah

(
e−i 2πτ

β

))
fS
h (τ) =

(2π)h−1Γ(h)2

2 cos πh
2
Γ(2h− 1)

(
iAh

(
ei

2πτ
β

)
− iAh

(
e−i 2πτ

β

))
,

Ah(u) = (1− u)hF(h, h, 1;u),

with F being the regularized hypergeometric function. We can actually solve for the hA0 = 2

case and obtain the following expressions for f
A/S
0 :

fA
0 (τ) = 2 +

π − 2π|τ |
β

tan π|τ |
β

, fS
0 =

π

tan π|τ |
β

.

So, up to linear order corrections, the two-point function has the following form (for τ ∈
[0, β]):

G(τ) = Gβ
c (τ)

[
1− 1

2

∑
h

αh

(βJ)h−1

(
(v+h + v−h )f

A
h (τ) + (v+h − v−h )f

S
h (τ)

)
−

−
∑
h,h′

ah,h′αhα
′
h

(βJ)h+h′−2
fh,h′(τ)− · · ·

]

= Gβ
c (τ)

{
1− αA

0

βJ
FA

0 (τ)−
αS
1

(βJ)h
S
1−1

[
(v+

hS
1
− v−

hS
1
)

2
fS
hS
1
(τ) +

(v+
hS
1
+ v−

hS
1
)

2
fA
hS
1
(τ)

]
−

−a
A
00(α

A
0 )

2

(βJ)2
fA
00(τ)−

aA,S
0,1 α

A
0 α

S
1

(βJ)h
S
1

fA,S
0,1 (τ)− αA

1

(βJ)h
A
1 −1

[
(v+

hA
1
+ v−

hA
1
)

2
fA
hA
1
(τ)+

+
(v+

hA
1
− v−

hA
1
)

2
fS
hA
1
(τ)

]
− aA000(α

A
0 )

3

(βJ)3
fA
000(τ)− · · ·

}
,

(22)

where

FA
0 (τ) =

(v+
hA
0
− v−

hA
0
)

2
fS
0 (τ) +

(v+
hA
0
+ v−

hA
0
)

2
fA
0 (τ)

and the first values of h are hA0 = 2, hS1 = 2.65, hA1 = 3.77, the notation aA,S
m,n represents the

value of ahA
m,hS

n
, aAmn = ahA

mhA
n
and so on, similarly for fA,S

m,n(τ). Besides,

vA0 =

(
1− 3

2
sin (2θ)

1 + 3
2
sin (2θ)

)
.
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Note. It is important to emphasize that when µ = 0, αS
h = 0 (including the hS0 = 1 mode),

therefore we get the same expansion of the two-point function as in the Majorana SYK case.
In fact, the saddle point solution remains the same in both cases (up to a factor of 2), but the
difference lies in the perturbation part: since in the SYK model we only have anti-symmetric
perturbations of the saddle solution, while in the cSYK model we also have a symmetric part
that contributes as well.

Note that at τ = β
2
, the symmetric parts are null, namely fS

h (β/2) = 0.
Following the same steps as in the Majorana case, we can obtain the grand-potential ex-

pansion βΦ = −N logZ

βΦ = − log

[ˆ
D[ψ†ψ]e−IcSY K

]
= βΦCFT +

∑
h

gh

ˆ β

0

dτ ⟨Oh(τ)⟩connβ − 1

2

∑
h,h′

ghgh′

ˆ β

0

dτ1dτ2 ⟨Oh(τ1)Oh′(τ2)⟩connβ +

+
1

3!

∑
h,h′,h′′

ghgh′gh′′

ˆ β

0

dτ1dτ2dτ3 ⟨Oh(τ1)Oh′(τ2)Oh′′(τ3)⟩connβ + . . .

where βΦCFT

N
= βE0 −S0 − βµ, E0 is the ground energy, µ the chemical potential of the model,

and S0 is the cSYK zero-temperature entropy, given by:

S0 = 2πEQ+

ˆ 1
2
−∆

0

2πx sin (2πx)

cosh (2πE)− cos (2πx)
dx. (23)

By CFT arguments, the one-point function ⟨Oh⟩β = 0 for h ̸= 2k, k = 1, 2, 3, . . . Otherwise,

⟨Oh⟩β =
Nbh
(βJ)h

.

Then, the grand-potential gets the form:

βΦ = NβE0 −NS0 − βµN + βN
∑
h

ghbh
(βJ)h

− 1

2

∑
h

g2h

ˆ β

0

dτ1

ˆ β

0

dτ2 ⟨Oh(τ1)Oh(τ2)⟩β + · · ·

where the fourth term has only contributions from h = 2k, k ∈ N and ⟨Oh(τ1)Oh′(τ2)⟩β ∝ δh,h′ .

The fifth term can be calculated explicitly by introducing a UV cutoff8 ε ∼ 1/J :

g2h

ˆ β

0

dτ1

ˆ β

0

dτ2 ⟨Oh(τ1)Oh(τ2)⟩β = Ng2hβ

ˆ β−ε

ε

dτ

(
π

βJ sin πτ
β

)2h

=
N(g2h/J

2)(βJ)

(h− 1/2)(εJ)2h−1
+
N(g2h/J

2)

(βJ)2h−2

π2h−1/2Γ(1
2
− h)

Γ(1− h)
,

where the first term represents a correction to the ground energy. Finally, we arrive at

βΦ = βΦCFT +N
∑
h

(gh/J)bh
(βJ)h−1

− 1

2

∑
h

[
N(g2h/J

2)(βJ)

(h− 1/2)(εJ)2h−1
+
N(g2h/J

2)

(βJ)2h−2

π2h−1/2Γ(1
2
− h)

Γ(1− h)

]
+ · · ·

8This cutoff is of order 1/J because at order βJ ∼ 1 the conformal limit stops working.
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And using the thermodynamic relation ϵ = E/J = −∂β logZ/J = ∂β(βΦ/(JN)), the
expression for the energy is:

ϵ = ϵ0 −
µ

J
−
∑
h

(gh/J)bh(h− 1)

(βJ)h
+

− 1

2

∑
h

[
(g2h/J

2)

(h− 1/2)(εJ)2h−1
− (2h− 2)(g2h/J

2)

(βJ)2h−1

π2h−1/2Γ(1
2
− h)

Γ(1− h)

]
+ · · ·

(24)

Recalling that the sum over h runs over all scaling dimensions, i.e. including hAm and hSm,
we rewrite the previous expression as

ϵ = ϵ0 −
µ

J
+

c2
(βJ)2

+
c3

(βJ)3
+

c4
(βJ)4

+
c2hS

1−1

(βJ)2h
S
1−1

+
c5

(βJ)5
+

c2hS
1

(βJ)2h
S
1

+

+
c3hS

1−2

(βJ)3h
S
1−2

+
c6

(βJ)6
+

c2hA
1 −1

(βJ)2h
A
1 −1

+
c3hS

1−1

(βJ)3h
S
1−1

+
c7

(βJ)7
+

c2hA
1

(βJ)2h
A
1

+ . . .
(25)

with hS1 = 2.65 and hA1 = 3.77. One has to be careful when obtaining the coefficients numeri-
cally, this because the powers p = 3hS1 − 2 ≈ 5.95 and p = 6 are very close to each other and
some precision may be lost. This also applies for the powers p = 3hS1 − 1 ≈ 6.95 and p = 7.

Notice that the first non-integer exponent comes from the two point function in the free
energy calculation ⟨OhS

1
OhS

1
⟩. Also, numerically, we can see that terms 1/(βJ)p with p =

hS0 , h
A/S
1 , h

A/S
1 + 1, h

A/S
1 + 2, h

A/S
2 or hS3 are absent. Therefore, it is natural to assume that

we do not expect terms with powers p = h
A/S
m + n, with n = 0, 1, 2, . . . to be present in the

energy expansion.

Figure 3: Energy at different temperatures as a function of µ/J . It is noticeable a linear
behavior, from which, ϵ(µ = 0) = ϵ0 is twice the value of the Majorana SYK model (since we
have twice the number of fields here).
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6 The U(1) charge Q
As shown before, a consequence of the non-zero µ in the cSYK model is the presence of a U(1)
charge. This quantity represents the so called particle density, which in our case is just the
number of fermions (there is no space). And it can be calculated by the UV regime of the
two-point function, namely:

Q =
1

2

(
G(0+) +G(0−)

)
=

1

2

(
G(0+)−G(β−)

)
. (26)

Another expression, derived in Gu, Kitaev, Tarnopolsky, et. all., which depends on the
asymmetric parameter θ is:

Q = − θ

π
−
(
1

2
−∆

)
sin (2θ)

sin (2π∆)
, (27)

and for the q = 4 case:

Q =
1

4
[3− tanh (2πE)]− 1

π
tan−1

(
e2πE

)
. (28)

Note. One can see that both (26) and (27) give the same observable, but their rhs have different
nature. That is, the expression in (26) comes from UV behavior of the two-point function, while
(27) can be obtained from θ which is part of the IR solution of G(τ). Therefore, the charge is
a quantity that allow us to relate the UV and the IR regimes9.

Figure 4: Charge as a function of the chemical potential, from which we can extract the value
of the compressibility K, we can see a linear behavior at different temperatures.

Given that we have a non-zero chemical potential, there is an additional thermodynamical
quantity that we can calculate: the Compressibility K. This quantity relates the particle

9This are called Luttinger relations, more on this on Appendix C.
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density Q with the chemical potential µ and is defined as10

K =
∂Q
∂µ

∣∣∣∣
µ→0+

. (29)

In our case, and according to Figure 5, the compressibility (as β → ∞) has the value of
K = 1.0466359308978943.

Figure 5: Compressiblity as a function of the temperature, from which we can extract its value
from the limit as T → 0, we can see a linear behavior.

A Free two-point function for finite temperature

In Fourier modes, the SD equations can be written as

G̃(iωn) =
1

iωn + µ− Σ̃(iωn)
, (30)

where in the free case, we just have

G̃0(iωn) =
1

iωn + µ
. (31)

To obtain the free two-point function at finite T, we have to calculate the series:

Gβ
0 (τ) =

1

β

∞∑
n=−∞

G̃0(iωn)e
−iωnτ =

1

β

∞∑
n=−∞

e−iωnτ

iωn + µ
. (32)

10Usually, from statistical mechanics one defines the compressibility as

K =
1

ρ2
∂ρ

∂µ
,

where ρ is the particle density (in our case, there is no space, so particle density is, essentially, the number of
particles).
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Using the relation:
∑
n

f(iωn) =
β

2πi

˛
C

dz
f(z)

1 + e−βz
= − β

2πi

˛
C

dz
f(z)

1 + eβz
, we have

1

β

∞∑
n=−∞

e−iωnτ

µ+ iωn

= − 1

2πi

˛
C

dz
1

(1 + eβz)
e−zτ

(µ+ z)

= − 1

2πi

˛
C′
dz

1

(1 + eβz)
e−zτ

(µ+ z)

= −Res
z=−µ

e−zτ

(1 + eβz)(µ+ z)

= − eµτ

1 + e−βµ

= −e
µτ

2

[
1 +

(
βµ

2

)
− 1

3

(
βµ

2

)3

+ · · ·

]
,

where in the second line we shifted the contour C to C ′ so that we enclose the pole at z = −µ
and in the last line we use that βµ≪ 1 (UV limit).

Similarly,

1

β

∞∑
n=−∞

eiωnτ

µ+ iωn

=
1

2πi

˛
C

dz
1

(1 + e−βz)

ezτ

(µ+ z)

=
1

2πi

˛
C′
dz

1

(1 + e−βz)

ezτ

(µ+ z)

= Res
z=−µ

ezτ

(1 + e−βz)(µ+ z)

=
e−µτ

1 + eβµ

=
e−µτ

2

[
1−

(
βµ

2

)
+

1

3

(
βµ

2

)3

+ · · ·

]
.

Therefore,

Gβ
0 (τ) =

[
−sgn(τ)

2
−
(
βµ

4

)
+

1

6

(
βµ

2

)3

+ · · ·

]
eµτ . (33)

From this expression, taking the limits as τ approaches zero, we have:

Gβ
0 (0

+) = Q− 1

2
, Gβ

0 (0
−) = Q+

1

2
,

and we recover the same behavior as in the zero-T case, if we identify Q with µ as follows

Q = −
(
βµ

4

)
+

1

6

(
βµ

2

)3

+ · · · (34)

B Eigenfunctions of the Symmetric Kernel

C Luttinger relations

Note. It is conjectured that when gravity is considered, the UV and IR cutoffs of an effective
field theory should be related.
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This section is to show explicitly how the UV/IR relation of the charge comes as a phase
difference between both asymptotics of the two-point function (as in the usual Luttinger-Ward
analysis for Fermi liquids). So, starting from the definition of the charge:

Q− 1

2
= G(0+) =

ˆ ∞

−∞

dω

2π
G(iω)eiω0

−

=

ˆ ∞

−∞

dω

2π
∂iω

(
1

G(iω)
+ Σ(iω)

)
G(iω)eiω0

−

=

ˆ i∞

−i∞

dz

2πi
∂z

(
1

G(z)
+ Σ(z)

)
G(z)ez0

−

= −
ˆ i∞

−i∞

dz

2πi
∂z logG(z)e

z0− +

ˆ i∞

−i∞

dz

2πi
G(z)∂zΣ(z)e

z0−

where in the second line we used the SD equations in the form

G(z) =
1

z + µ− Σ(z)
=⇒ 1 = ∂z

(
1

G(z)
+ Σ(z)

)
.

Clearly, the last expression is logarithmically divergent, so we have to regularize it. Here we
show how to solve the first integral, the second one can be referred to Notes on the Complex
SYK (Gu, Kitaev, Sachdev, Tarnopolksy):

−
ˆ i∞

−i∞

dz

2πi
∂z logG(z)e

z0− = − lim
η→0

[ˆ −iη

−i∞

dz

2πi
∂z logG(z)e

z0− +

ˆ i∞

iη

dz

2πi
∂z logG(z)e

z0−
]

= − lim
η→0

[ˆ ∞+iη

0+iη

dz

2πi
∂z logG(z)e

z0− −
ˆ ∞−iη

0−iη

dz

2πi
∂z logG(z)e

z0−
]

= − lim
η→0

(ˆ ∞

0+

dz

2πi
∂z log

G(z + iη)

G(z − iη)
ez0

−
)

= − 1

π
lim
η→0

[argG(∞+ iη)− argG(iη)] .

Where in the second line we have used complex analysis with the contours shown in Figure
6 to show that

˛
C1
dzf(z) = 0 =⇒

ˆ i∞

iη

=

ˆ ∞+iη

0+iη

dzf(z)

˛
C2
dzf(z) = 0 =⇒

ˆ −iη

−i∞
= −
ˆ ∞−iη

0−iη

dzf(z).

And by taking the η → 0 limit, we can see that the charge comes from a phase difference
between the UV and the IR cut-offs of the Green’s function.
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Figure 6: Integral contours that allow us to go from the complex lines to the shifted real lines.

D Kernel eigenvalues for non-zero chemical potential

In the case of non-zero µ, the kernel eigenvalues have the form

kA(h, q, θ) =
Γ
(

2
q
− h
)
Γ
(

2
q
+ h− 1

)
Γ
(

2
q
+ 1
)
Γ
(

2
q
− 1
) ·

(
2

q
− 1 +

cos(2θ) sin(πh)

sin 2π
q

−

−

√
sin(2θ)2

(
1− sin2(πh)

sin2(2π/q)

)
+

(
cos(2θ) + (2∆− 1)

sin(πh)

sin(2π/q)

)2


kS(h, q, θ) =
Γ
(

2
q
− h
)
Γ
(

2
q
+ h− 1

)
Γ
(

2
q
+ 1
)
Γ
(

2
q
− 1
) ·

(
2

q
− 1 +

cos(2θ) sin(πh)

sin 2π
q

+

+

√
sin(2θ)2

(
1− sin2(πh)

sin2(2π/q)

)
+

(
cos(2θ) + (2∆− 1)

sin(πh)

sin(2π/q)

)2
 .

(35)

The integer values of h are protected (independent of θ), therefore h
A/S
0 are the same re-

gardless of the values of θ that we choose. However, the rest of scaling dimensions depend on
the asymmetric parameter, namely, h

A/S
m = h

A/S
m (θ) for m > 0.

Note. It is worth mentioning that when θ ̸= 0, the action of KA/S on the basis eigenfunctions
does not return an anti-symmetric/symmetric eigenfunction again, but instead a mixture of
both. In contrast with the µ = 0 case, in which we do have the same parity eigenfunction as a
return after the action of the kernel.
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Figure 7: hA1 vs. µ/J (that depends implicitly on θ). We can see that the scaling dimension
reduces as the values of chemical potential become larger.

Figure 8: hS1 vs. µ/J . Again, the scaling dimension reduces as the values of chemical potential
become larger at different temperatures.

E Strange Metals and Holographic description

This section is based on Bekenstein-Hawking Entropy and Strange Metals by S. Sachdev.
Strange metals are quantum states without quasiparticles that have a U(1) conserved charge

that is continuously variable and it is not spontaneously broken (neither the translational
symmetry).

A first description or a holographic duality comes from (23), where
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∂S0

∂Q
= 2πE . (36)

If we focus on extremal charged black holes (BH) with two-dimensional anti–de Sitter (AdS2)
horizons. For instance, with the Einstein-Maxwell theory of (planar or spherical) charged black
holes embedded in asymptotically AdSd+2 space, with d ≥ 2 (the Reissner-Nordström-AdS
solution), it was found that

∂SBH

∂Q
= 2πE , (37)

where SBH is the Bekenstein-Hawking entropy density of the black hole, Q is the BH charge
density, and E is the strength of the electric field. This relation comes from the laws of BH
thermodynamics (and by using natural units: ℏ = c = kB = 1).

E.1 Charged Black Holes

E.1.1 Planar charged BH

Consider an Einstein-Maxwell theory of gravity with a U(1) gauge field strength Fµν :

IcBH =
1

16πGN

ˆ
dd+2x

√
−g
[
R+

d(d+ 1)

r2AdS

− r2AdS

g2F
F 2

]
, (38)

where g is the metric, R is the Ricci scalar, rAdS is the radius of AdSd+2, and gF is the gauge
coupling constant. The solutions of this action for the metric and gauge field leads to:

ds2 =
r2

r2AdS

(
−fdt2 + dx⃗2

)
+
r2AdS

r2
dr2

f
, A = µ

(
1− rd−1

0

rd−1

)
dt. (39)

with

f = 1 +
Θ2

r2d
−
(
rd+1
0 +

Θ2

rd−1
0

)
1

rd+1
.

The parameters Θ, r0, and µ are determined by the charge density Q and the temperature
T of the boundary theory in the following way

µ =

√
d

2(d− 1)

gFΘ

R2rd−1
0

,

Q =
√

2d(d− 1)
Θ

8πGNrdAdSgF
,

T =
(d+ 1)r0
4πr2AdS

(
1− (d− 1)Θ2

(d+ 1)r2d0

)
.

The Bekenstein-Hawking entropy density of this solution (in natural units) is

SBH =
ABH

4G
=

1

4G

(
r0
rAdS

)d

. (40)

With this in mind, let us focus near the horizon geometry, which at T = 0 is at
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rh =

(
(d− 1)Θ2

(d+ 1)

)1/(2d)

, (41)

so, near the horizon let ζ be

1

ζ
≡ r − rh. (42)

Rewriting the metric in terms of ζ, near the horizon (ζ → ∞) and at T = 0:

ds2 =
r2AdS

d(d+ 1)

(−dt2 + dζ2)

ζ2
+

r2h
r2AdS

dx⃗2, (43)

and the gauge field becomes

A =
E
ζ
dt. (44)

The geometry has factorized into AdS2 × Rd, with AdS2 radius11:

RAdS =
rAdS√
d(d+ 1)

.

And the expression of A determines the strength of the AdS2 electric field in terms of the
dimensionless parameter E , which is (in this calculation)

E =
gF sgn(Q)√
2d(d+ 1)

. (45)

This is called the equation of state12 that relates Q and E , analogous to (27) (using (10) to
replace θ with E).

Also, by taking the T → 0 limit in SBH , we have that

SBH =
2πgF |Q|√
2d(d+ 1)

= 2πQE .

We finally need to show the equivalence of E from both, the electric field in the AdS picture
and the asymetric parameter in the cSYK model. To do this, we need the generalization of the
metric and gauge field in a finite temperature case:

ds2 =
R2

AdS

ζ2

[
−
(
1− ζ2

ζ20

)
dt2 +

dζ2

(1− ζ2/ζ20 )

]
, A = E

(
1

ζ
− 1

ζ0

)
dt, (46)

where ζ0 = 1
2πT

. Hence, the action of a matter field Ψ (fermionic spinor), with charge q = 1
moving in this background is:

Imatter = i

ˆ
d2x

√
−g
(
Ψ̄ ̸DΨ −mΨ̄Ψ

)
,

with ̸D = γµDµ, γ
µ are the gamma matrices and Dµ is the covariant derivative with charge

q = 1. The thermal AdS2 correlator of this fermions in an electric field background has the
form:

11This is a metric of a planar charged BH, the results for a spherical one are given below.
12Again, this relation is not the same as for the spherical BH one. But, the more fundamental relation

∂S/∂Q = 2πE is the same in both cases (and in cSYK as well).
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G(ω) = − iCe−iθ

(2πT )1−2∆

Γ
(
∆− i(ω−ωS)

2πT

)
Γ
(
1−∆− i(ω−ωS)

2πT

) ,
where ∆ = 1/4, C is real and positive and ωS = T ∂S

∂Q . This correlator has the same form as in
the cSYK model. This computation shows that 2πE = ∂S/∂Q, the same as in the cSYK case.
The scaling dimension ∆ is related to the AdS2 spinor mass m:

∆ =
1

2
−
√
m2R2

AdS − E2.

E.1.2 Spherical charged BH

Here, we summarize the results (as in the previous case) of the spherical solution of a charged
BH. In this case, we consider a solution of (38) with metric:

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

d, V (r) = 1 +
r2

r2AdS

+
Θ2

r2d−2
− M

rd−1
, (47)

where M is determined by the zero of V (r) at r0. Following the same steps for T = 0 in the
planar BH case, one finds

Θ2 =
r2d−2
0 [(d− 1)r2AdS + (d+ 1)r20]

(d− 1)r2AdS

,

near the horizon we define:

r − r0 =
R2

AdS

ζ
,

with

RAdS =
rAdS√

d(d+ 1) + (d− 1)2r2AdS/r
2
0

so that near the horizon, the metric becomes AdS2 × Sd

ds2 = R2
AdS

(
−dt2 + dζ2

ζ2

)
+ r20dΩ

2
d (48)

and in the gauge field sector, we have

Q =
rd−1
0

√
2d [(d− 1)R2

AdS + (d+ 1)r20]

8πGNgF
,

E =
gF r0

√
2d [(d− 1)R2

AdS + (d+ 1)r20]

2 [(d− 1)2r2AdS + d(d+ 1)r20]
,

the equation of state, and the explicit form of the entropy density, can be obtained eliminating
r0 from both equations, so that the fundamental equation

∂SBH

∂Q
=
∂SBH/∂r0
∂Q/∂r0

= 2πE

is satisfied, as expected.
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Note. It is worth to mention that for charged black holes, as the corresponding mass approaches
the charge (near-extremal Reissner-Nordstrom BH) a throat develops whose geometry is similar
to that of AdS2×S2. And the AdS2 part for this system is said to be dual to a nearly conformal
system with no spatial dimension, namely, the cSYK model in the IR regime.

Such throat is unique for charged BH, there is no such analogue for Schwarzschild ones.
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