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1 Why CFTs?

Conformal field theories have been one of the most studied and talked about subjects
in the recent history of Physics, so what is so special about them? In the following section
we will try to give some motivation from different perspectives. Although the course will
be given from the point of view of high energy theory, we hope to make statements that
are general enough to also please the condensed matter folks.

1.1 From first principles

A way in which physics has become more like mathematics in the recent decades has
been the thirst for generality. This is embodied in the many no-go theorems developed over
the years. With Einstein’s special relativity, we learnt that Lorentz invariance is a symmetry
of our universe.In addition to this, we also have translational invariance in spacetime, and
GR promoted this global symmetry to a local one, and added diffeomorphism invariance. As
gauge theories developed by Weyl and others in the 20s and 30s, and with the proliferation
of quantum field theories, and symmetries as a way to organize the particle zoo, symmetries
became a powerful tool to organize the spectrum of theories. Now that we discovered that
the "symmetries" of the universe formed a much bigger group than initially imagined, the
reductionist approach to find a Grand Unified Theory was initiated by Salam, Weinberg,
Georgi, Glashow, and others [3][4][5]|6]. The question of generality then arose: what kind
of symmetries, even in principle, could we have in our universe? The answer did not take
long to come from the celebrated Coleman-Mandula theorem [7]! which assuming: 1. Non-
trivial scattering, 2. Massive particles, 3. Finite number of mass states, and 4. Analyticity
of the S-Matrix, they were able to prove the wonderfully general result that the only way to

LA good discussion on this theorem is in Weinberg Vol 3 Ch24 Appendix B



not violate these assumptions is to have a direct product of Poincare x Internal symmetry
group. This completely shut down any hope of some spacetime-gauge unification, but at
the same time very much focused the research directions and saved countless vain efforts of
unification. Nonetheless, and to the point of these classes, there were two notable loopholes
to this theorem. Firstly, the Coleman-Mandula theorem considers only bosonic symmetries.
By including fermionic spacetime generators, one arrives at the ubiquitous supersymmetry.
On the other hand, one can relax the condition of massive states, and, as shown by Mack
and Salam (and Weinberg)[8|[9] the most general group that preserves the momentum
squared is the conformal group, and gives constraints on what kinds of symmetry breaking
are possible (namely, they show internal symmetry breaking is the only possibility). Thus,
we conclude the first principles section with the following answer: we consider conformal
symmetry because it is the biggest allowed bosonic extension of Poincare.

1.2 What is conformal anyway

This will be a brief section as the answer to this question will be covered in excruciating
detail throughout the course, but in simple terms, conformal maps are those that locally
preserve angles. In 4D, we can clearly see that all re-scalings of coordinates (x — Ax) will
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Figure 1. Caption

keep angles the same. Similarly, translations, and rotations will also preserve angles. It
turns out (as we will see) that boosts, and "special conformal transformations" also preserve
angles. The latter can be seen as a composition of an inversion followed by a translation
followed by another inversion. The rule of thumb is that a scale invariant theory will often
also be conformally invariant, although this needs not always be the case [10]. In 2d, under
certain assumptions, it can be shown that the scale invariance is enhanced to conformal
invariance[11]. On the other hand, as a byproduct of dilations being a subgroup of the
conformal group, scale invariance is implied by conformal invariance. For more information
you can check [12][13]. This means that many theories that we know and love posses this
symmetry, as an example Maxwell’s equations in the vacuum are scale invariant, although



this gets spoiled at the quantum level due to quantum corrections. Similarly, massless free
scalars £ = 0,,¢00"¢ also have no scale dependence. In general, one may consider a theory
scaleless if there are no dimensionful parameters in the theory. An example of this might
be A¢* theory in 4d. Nonetheless, the quantum corrections spoil this invariance, although
as we raise the cutoff to infinity, the theory flows to the free Lagrangian (A = 0). RG flows
will key in understanding the importance of Conformal Field theories as we shall see. Other
members of this select club include what Witten calls "the simplest theory in the world"
a.k.a. N = 4 Super Yang Mills. We also have other examples such as Seiberg-Witten
theories, or many other theories at fixed points.

1.3 Stat mech and RG summary?

Consider a A\¢* theory with an additional Z, symmetry, meaning there are no odd
terms in the lagrangian. We consider this theory on a lattice of spacing a, meaning that
there will be a UV cutoff proportional to 1/a. As usual in the effective field theory (EFT)
approach we include all terms that are compatible with our symmetries, giving rise to an
action such as

S = /ddd’c@#gb@”gb + %mQQZ)Q + Aot + g10° + go0000 + ... (1.1)

Now we consider the space of all coupling constants, and consider how the costants flow as
we coarse grain (change the cutoff). We may want to do this if we are interested in the long
range physics, so we can average over a higher lattice spacing and consider the resulting
theory. As you will have seen in statistical mechanics, averaging over some lattice sites
changes the value of the coupling between neighbours in e.g. the Ising model. This is what
we mean by flowing; we are going from a theory with a coupling J to one with a coupling
J’ by coarse graining and looking at the bigger picture. We now turn our attention to the
low energy physics that we care about, say below an energy scale of A’ = %, allowing us to
write A’ = % for some . Then we can construct our fourier modes as such:

b = Py + O
where ¢, describe the long-wavelength fluctuations

b = ¢kk‘<A/
k)l 0 k>N

and qﬁIdescribe the short-wavelength fluctuations that we don’t care about

i {¢kA’<k:<A
¢k:

0 otherwise

we now consider integrating out the UV modes, which effectively amounts to putting the
the UV modes on-shell at first approximation. We additionally decompose the free energy
as

Fp] = Fo [6 ] + Fo [0 ] + Fr (65> 1] (1.2)

2For a more detailed discussion, see [14], which this subsection takes as a strong inspiration




so that

7= / [ déxe " = / [T dereolox] / [1 defe Poloclefilacad.  (13)

k<A k<A N <k<A

Since we started with a Lagrangian with all possible operators, all that integrating
fields out can do is change the coefficients of some of these operators, as the Lagrangian to
start with was the most general we could have. Thus, we can write

7 = / Do 51#7] (1.4)

where S’ is the effective action with different coefficients. This is referred to as Wilsonian
renormalisation and lies at the heart of the current understanding of quantum field theory.
It is a profound realisation that we can describe a theory at two different energy scales by
simply tuning the coefficients of the same theory. Nonetheless, there is one more subtlety
to address. The two theories are not equivalent, as the regime of validity is different for
both of them. This can be remedied by changing ¥’ = vk so that &’ goes up to the original
cutoff A, and the space rescaling is 2’ = %, which is equivalent to the aforementioned coarse
graining. As a final step we should canonically normalise fields, should the RG lead to a
different kinetic term. Then, shifting v € [0,00) away from 0 traces flows in parameter
space, governed by a differential equation known as the beta function. Now the question
arises, what happens when we do this procedure ad infinitum? The two possibilities we
have are either converging on a set of values for the couplings, or being pushed to infinity
in parameter space. The former is referred to as fixed points for obvious reasons. Since the
theory parameters do not change after the renormalisation procedure, that means that the
new length scale will also not change. This in turn implies that this scale must either be
zero, or infinity. In Statistical field theory, the scale is often referred to as the correlation
length, and it is the scale at which two systems might affect each other (e.g. how far can
a spin up affect some other particle with spin down). The hallmark of phase transitions in
statistical mechanics is that the correlation length diverges as we approach critical points,
and since the correlation length blows up, which gives the average size of "spin bubbles",
this rids the system of a typical length scale. Without such restriction, we can have spin
bubbles of all sizes as there is no "length/energy". Sound familiar? As a final note, we
review the kinds of interactions we may have. These are coined "relevant", "marginal"
and "irrelevant" corrections. Relevant corrections are those that change the IR physics, in
other words their importance grows as we go to the IR (think of a mass term, if you are
in the TeV scale, it is not very relevant whether the rest mass of a particle is that of an
electron, or that of a proton, since the kinetic energy will dominate, on the other hand, if
we go into the deep IR, the mass will be the most important term). Irrelevant corrections
are those that are important in the UV physics, but not in the IR (think many higher
order interactions). Finally, marginal interactions happen when the fixed point is a fixed
manifold, and the interactions move you through it. One may guess the category of different
operators via engineering dimensions of operators, though operators may gain anomalous
dimensions through renormalisation, meaning that many seemingly marginal operators are



Figure 2. Image from [14]. The blue lines denote irrelevant deformations, while the red ones are
relevant ones moving us away from the critical surface.

not so. The reason why universality classes appear is because the vast majority of operators
are irrelevant, and so there are comparatively fewer theories that one may flow to in the

IR.

1.4 String theory, duh 3

Conformal invariance is one of the most important aspects of string theory, as we will
see, 2D CFTs are one of the most studied kinds of CFTs and they are so for many good
reasons, but one of them is their role in string theory. One of the first equations introduced
in string theory is the Polyakov action

1
Lz, g] = —ZT/dz‘f\/—ggabaax“ab:v# (1.5)

which gives the action of a string in a d-dimensional spacetime. It is straightforward to
show (DO IT) that it is invariant under rescalings of the metric g, — ¢4€2. Similarly, it
also has reparametrisation invariance, which gives us two further gauge transformations. in
particular: 1. Reparametrisation invariance:

la a / ! ! ! 8 ¢ a d
§O=pE) o () = ah(E), gl (&)zagilag,,,gcd(f)

2. Weyl invariance:
(&) = a"(€),  gw(&) = o()gar

3this section is partly inspired from [15]




which is the same number of components as the metric in 2d, g5, and thus, we can com-
pletely fix it to be anything you want. If you are not a masochist, this will be flat space
metric. It is thus thanks to conformal invariance, that we can have a "nice" string theory.
The Polyakov action can be related to the Nambu-Goto action, which has interpretation
of a Lagrangian that describes the area swept out by a string, more known as the "world-
sheet". The equations of motion then minimise the area, in a similar fashion to how we may
expect a particle to follow geodesics. Of course, the love story between string theory and
conformal field theory does not stop here. Bosonic string theory is a toy model and the more
serious attempts to describe the world come in the form of superstring theory, where the
conformal symmetry gets promoted to superconformal invariance as the worldsheet of the
string includes fermionic coordinates®. Another area where conformal field theory features
prominently is the now legendary AdS/CFT correspondence. As we will see, the isometry
group of AdS spacetime is the same as the conformal group, but we hope to say more about
this in later stages of the course. The selling point of the correspondence, as well as finding
a gravity theory (IIB superstring theory on AdSs x S°) that has a dual without gravity
(N = 4 Super Yang-Mills), is that the correspondance is also between weakly and strongly
couple theories. Needless to say, this is big as we know just as much about strongly coupled
theories as one might know about what the next lottery winning number will be.

4There are two formalisms to achieve superstring theory, one is worldsheet supersymmetry and the other
one is spacetime supersymmetry. These two approaches seem to be equivalent, but no one has a proof of
this, they go by the names of Ramond-Neveu-Schwartz (RNS) formalism, and the Green-Schwartz (GS)
formalism, which you can read more about in the Becker-Becker-Schwartz book.



2 Conformal Field Theory (CFT)

CFTs can be thought of as the endpoints of RG flows: In the UV, there are no energy
scales because all energy parameters are irrelevant; and in the IR, there are no energy scales
because all massive modes are not excited. So, what is a correct definition of a CFT? There
are different answers depending on the reference we look at, but, in general one can define
it to be a Quantum Field Theory with the property that:

Wlg, J] = W[Q2g, Q24J], (2.1)

where W is the generating functional, g is the background metric, J is a current, and §2
is a (rescaling) function®. This can be translated into the following equation of correlation
functions:

(O1(m1) -+ On(@n)) g2y = Qw1) ™21+ Q) ™2 (O1(w1) -+ O () (2.2)

gl

This is known as a Weyl transformation. A subcase of this is the (conformal) transfor-
mation, where z# — I# = z# + €, where

dirdz” = Q(z)*dztdz” .

There is a fundamental distinction that we want to stress: A Weyl transformation is not
a conformal transformation, but they give the same results. The reason is that a conformal
transformation is an effect of a Weyl transformation. In other words, we have two points

of view:

1. Keep the points where they are, but change the way of measuring distances (the
metric).

2. Keep the metric intact and change the coordinates.

Both cases are equivalent, but not the same!
Focusing on conformal transformations, we can rewrite our equation (2.2) as:

(O1(&1) - On(n))a = Qa1) ™2 - Qwn) ™2 (O1(21) -+ On(@n))pa - (2.3)

2.1 Conformal transformations

Let’s see what is the analytic for of the conformal transformations z# — z# = x* +

e (z), which imply

G (T) = Q(x)zguu(l’)

"Recall that Z[g, J] = eVlo Il = /D<I> ¢ Slo It/ d'e J(@)0@)  ith O being an operator made out of ®

fields and the convention here is Euclidean time.



Now, recalling that, in general,

- 0z, O,
g,uu(l') = &%Z 85}59a6($)

= (52‘ - 86“6“) ((55 — 9P¢ nu) 9ap ()
= gHV(x) — (Ouer + Ovey) -

In order for this transformation to be conformal, we require

2

6u€u + aueu = f(m)g,ul/(x)a f(x) d

0%¢p. (2.4)

If we consider g, (x) = 1, (Minkowski metric), then differentiating the above expression,
we get

20%¢,(x) = (2 — d)0, f(z), (2.5)

Finally, from (2.4) and (2.5), we arrive

(d—1)0%f(x) = 0. (2.6)

From (2.6), we can learn two things: i) For d = 1, there is no constraint in the form
of f(x), then any smooth function is conformal; ii) For® d > 3 by solving 02 f(z) = 0, we
obtain that f(z) = A+ B,a*, so

en() = ay + b’ + cpppr’a?, Cuvp = Cpupy (2.7)

replacing the previous expression in (2.4), (2.5), we can fix by, and c¢,,,. Therefore, the
conformal transformations read:

t =2t + o, Translations

* = \xt, Dilation

= MKz, Rotations

N ah — bVa? )

= Special Conformal

1—2b-2+ b222’

From each transformations we associate a generator and form the Lie algebra:

SWe will study the d = 2 case in a separate chapter.



[
(MH, P?] =i (5" P — 1" P¥)
(MK = i (K — 7 K"
|

[

|

D, P*] = —iP*
D,K!] =iK"
Pt K" = =2i(n"" D + M*), (2.9)
where
PH = —4oH

MM = —i (210" — 2 0M)
KV = —4 (a:28“ — 2x“ac”81,)
D = izl (2.10)

Additionally, we have a discrete Zo transformation called Inversion (I):

oh
I: a2t — 2 (2.11)
Why don’t we consider it as part of the algebra? Simply because it maps points close to
the identity to points far away from it (e.g. the origin gets mapped to infinity).

2.2 Energy-momentum tensor criterion

Recall that under an arbitrary transformation of coordinates of the form z#* — ¥ =
x# + e#(x) can be considered as a translation of z#. Then the action changes by

68 = / A%z T e,

— ;/ddaz T (Juey + Ovep) (2.12)

where T"" is the energy-momentum tensor and is the current of four-vector translations.
In the second line, we use the fact that the stress-energy tensor T is symmetric’.
If our transformations are conformal, then they satisfy (2.4), so .5 becomes:

1 2

(SS = 2/ddﬂ7 T'LLV E ape,ﬂ gNV
1

== /ddx TH 0. (2.13)

"Notice that for Lorentz invariant theories, if it is not symmetric, then there is always a way to find a
symmetric form of T#”. This is called the Belinfante tensor, and this is a consequence of the ambiguity in
the definition of T#” from the equation 9, T*" = 0.



We learn something very interesting here: Tracelessness of the energy-momentum
tensor, implies the invariance of the action under conformal transformations. In
fact, there are some theories with scaling symmetry for which T"” can be made traceless;
if so, then conformal invariance is a consequence of dilation (and Poincaré) invariance.

2.3 Operators of a CFT

The discussion we have had so far is related to classical field theory (think about the
equation (2.3) as an thermal average of a statistical system in a thermal bath or just the
action on W (g, J] for the zero-temperature case) and then the main operators called primary
are defined as those that transform as (2.14). However, we would like to focus our attention
to the quantum case because the most subtle and interesting parts occur at the quantum
level. Here the correlation functions can be thought of by defining a ground state |0) or by
the path integral:

(O1(21) .. On(an)) = ;/DQ O1(21) ... On(n)e 51!

Then, a natural question to ask is how many quantum numbers are needed to specify
to know the operators of the theory? We're glad you asked!

Since we can translate any point to the origin by acting with P, then we will focus
on transformations that leave the origin invariant. That is, dilation, rotation, and special
conformal. Thus, our aim is to build a representation that has energy bounded from below.
In such a way, we define the operator which is annihilated by the action of K* as a (quasi-
)primary operator (analogous to the state |j,j) in SU(2) annihilated by J;). Once we
have this operator, all the others (descendant operators) can be obtained by acting with
P# (analogue to J_ in our SU(2) case).

Therefore, for a primary operator, we have to specify 2 quantum numbers: the Lorentz
representation R (spin) and its scaling dimension A. So, we label our operator as (’)ﬁ(O),
where A labels the spin representation of the operator, and the condition of the operator to
be a primary is that [K#, 04 (0)] = 0. Finally, we move it to an arbitrary spacetime point
z via 04 (x) = U(2)OA(0)U~1(z), here U(x) = e~*F=.

Hence, for a conformal transformation z# — # = G",x", a (quasi-)primary operator
transforms as

OA(x) = OR(z) = |==| L% R)OR(G 1 x), (2.14)

with R being the orthogonal matrix R*,(z) = Q(m)_lgiﬁ, so that RTnR = n. And
97

o ‘l/d = Q(z) comes from the Jacobian when doing the change of coordinates.

2.4 Consequences of conformal symmetry
2.4.1 Conformal Invariants

Consider any set of points in a C'F'T', then

~10 -



i) Translation and rotation invariance implies

|z1 — 2] = invariant.

ii) Including scale invariance requires

lv1 — 22| . .
ﬁ = tnvariant.
Tr3 — T4

iii) If we apply special conformal transformation to |x; — x3|, then by (?7?)

‘371 - 1’2|
(1—2b- 1 + b223)1/2(1 — 2b - 29 + b223)1/2

’.1‘1 — .%'2| —

So, the conformal invariant is composed by cross ratios, for instance for 4 points we

have two ratios:

|1 — @a |73 — 4] |z1 — 24 |02 — 23]

|21 — 3| w2 — 24|’ |21 — 3| w2 — 4]
Which can be seen schematically as in Figure 3:

2 4 2 4

Figure 3. The two conformal ratios schematic form for 4 points.

In fact, one can show that there are §(n — 3) cross ratios for n distinct points (the

expressions can be quite complicated).

2.4.2 Conformal correlation functions

Conformal transformations constraint the form of observables, in particular, the corre-

lation functions of primaries. To see this, the conformal invariance implies:

(OR1(@1) -+ O () = (O (31) -+ Odr (i)
= Q1) A Q) AL (R) - LY (R) (OR) (31) - OFr ()
(2.15)

This is the generalization of (2.3), for any field in a representation R of the Lorentz group.
But, for simplicity, let’s focus on a theory with scalar fields only, so that (2.3) is enough.

— 11 —



Given that we have more symmetry than Poincaré, then that will give us constraints
on the form of the n—point functions. Start with the 1-point function. If we apply the
invariance under rotations and translations, we then have

(O(x)) = h(lz]),
now using the rescaling covariance, we require
h(lz]) = X2h (M)
to fulfill this condition, h(]z|) should be a polynomial in |z|, namely

(O(x)) = ‘C”A, C' = constant.
T

Finally, using (??) and (2.3), we have

C O (1-2b-x+0b%?)A/?
[ fz]A (1 =202+ 2R

since A can have any value (scaling dimension of the field), this expression is satisfied when
A =0 or C =0, hence

(O(x)) = {g o (2.16)

where the operator with scaling dimension A = 0 is the identity I and C' = (O(0)) by
translation invariance.

Let us see what happens to the two-point function. If we apply the invariance under
rotations and translations, we then have

(O1(21)O02(22)) = h (Jz1 — x2])

now using the rescaling covariance, we require

h(|z12]) = AP0 (A|21a))

with the notation x12 = x1 — x9. To fulfill this condition, A(|z|) should be a polynomial in

|z|, namely
Ciz
(O1(21)O2(z2)) = 7|x12|A1+A2.
Finally, let’s use (??) and (2.3):
012 . 012 (1 —2b-x1 + b21‘%)(A1+A2)/2(1 —2b-x9 + b2x§)(A1+A2)/2
P N T (1—2b- 21 + b222)21(1 — 2b - 29 + b223)A2 ’

from this last expression, for Cio # 0, we have A1 + Ay = 2A1 and A1 + Ay = 2A,, that
is A1 = As. Notice that we can rescale the operators O in such a way that the coefficient

- 12 —



C12 = 1. In conclusion, the 2-point function in a CFT for a quasi-primary (scalar) operator
is

1
(O1(21)O2(22)) = e NP (2.17)
12

Finally, in a similar fashion for the 3-point function we have that covariance under

rotations, translations and scaling gives

Cabe .
01 (21) O (12) O . __OM5 sing (77) and (2.3),
(O1(21)O2(22)O3(3)) Za+b+c:2?’iA2+A3 e using (77) and (2.3), we

have
Ci35 _ Ci35 (172)"2(238) 2 n78)72  pore vy = 1 — 2 - 2y + b2a2
12| |@23]° | 213 |z12]%|@23]° |23 'ylAl'y2A2'y3A‘3 ’ ¢ ’ v

Then, for non-zero C{35, we require
a+c=2A1,a+b=20A9,b+c=2A3,a+b+c= A1+ Ay+ Az, whose unique solution
isa=A1+A080— A3z, b=A0+ A3 — A1, c= A1+ A3z — As. Hence,

Ci23

<01($1)02(l’2)03($3)> = ’x12’A1+A27A3 |x23|A2+A3*A1 |$13|A1+A3*A2 ’

(2.18)

Note that C193 is unique and cannot be fixed to be 1 since the fields were already
rescaled to fix C'19 to unity, it is called structure constants and are model dependent.

The rest of the correlation functions can be built out of the 1, 2, and 3-point functions.
Therefore, knowing the scaling dimensions of the (quasi-)primary operators and
its structure constants, we know everything about the system. This is a very
powerful statement, all we need to do for a conformally invariant theory is to calculate the
CFT-data, i.e. {A;,C123}, and the rest is already fixed.

For instance, for the 4-point function (and all the other n—point functions, for n > 4),
we need to consider the conformal ratios discussed previously®. Even though conformal
symmetry does not fix the form of the function, it puts constraints in it. So, the 4-point
function can be parametrized as follows:

L1234 L1423

L1324

)

4
) [ 212522, (2.19)

1<j

(O1(21)Oa(22) O3(23) Os(x4)) = f(

13724

where A = "% A; and the function F(u,v) is not simply fixed by conformal invariance,
but can be built out of 3-point functions and its descendants.

8For the n < 4 case, we cannot form cross ratios, so the procedure is the one followed before.

~13 -



3 Aside: Noether Energy-Momentum tensor vs metric energy momen-
tum tensor

Following some of the discussion in the last lecture, and for general interest, we look at
two alternative but physically equivalent ways of defining a energy momentum (or stress-
energy) tensor. At this point I am sure everyone is familiar with them, but there is still
ongoing research surrounding this topic. This section is very close to that of the yellow
book [1] so you might as well consider a reference after most equations. I have spelled out
the calculations a bit more so you don’t have to do them (but you should anyway).

3.1 Stress a la Noether

First, we define the canonical stress-energy tensor as resulting from Noether’s theorem.
We begin by considering an action

S = /d%L(@,E)MCD) (3.1)
and making a transformation
r—a (3.2)
d(z) — (') = F(P(x)) (3.3)
we can consider an infinitesimal transformation such that
oxt
H= gt a 3.4
=t +w 5o (3.4)
1)
P (2') = O(z) + wa—}—(x) (3.5)
OWwq
and we say these transformations are generated by
0,®(x) = &' (2) — O(2) = —iw, G, ®(x) (3.6)
so that - SF
x
Gy =—0,0 — — .
1G, 5o Oy 5o (3.7)

we can expand the action as

S = /dd:z: <1 + 9y <wa§f:>> (3.8)

5F [, s OF
X E<@+Wa5uja, |:6H—au (Wa(ml)] <8V(I)+a,, |:Wa6wa:|> > 39)

and we realise that if we consider a global symmetry, the derivatives of w, are zero,

—

and so the terms that do not contain derivatives in w ,must be zero. Thus, we are left with

08 = —/da;jg‘(‘)uwa (3.10)
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where

oL ox” oL OF
=8 ——00,D — o - A1
Ja {a (0,5 5”5} dwa  0(0,®) o (3:-11)
at this point, we make the definition
oL
T = 0,P — oML 3.12
= ={ s - ) (312)

this is referred to as the canonical stress energy tensor. The conservation law for stress
energy tensors is 0, T"” = 0This tensor suffers from several pathologies; we would want
a stress energy tensor to be gauge invariant, as its components are phusycal observables;
for ezample, the Ov components are four-momentum density; P¥ = [ ddileco” . Similarly,
we would expect it to be symmetric if we want it to be coupled to gravity the same way a
current is to a spin-1 field. Additionally, we would expect it to be traceless for scale invariant
theories as previously discussed. We will look at an extremely convoluted example where
all three fail: 4d pure electrodynamics Let us begin with the Lagrangian

1
L= ZFWFW (3.13)
Then, the stress energy tensor is
1
TH = FHagy A, — n“VZFO‘ﬁFag (3.14)

Let us check gauge invariance: it is clear that the stress energy tensor will change by
Fre9¥ O, A under A, — 0o A, which is not zero. Secondly, we look at the tracelessness we
would expect at the classical level from electromagnetism; THy = —F*3 0o Ag in d=4, which
is also not zero. It is also apparent that this is not a symmetric tensor. There is a way
to symmetrise this tensor consistently: let us consider an infinitesimal Lorentz transform
under which

oxf 1 oF 1
= — (nPta” — "zt =—i-S"®P 3.15
5(&)“1/ 2 (77 x "7 x ) Y 5&)/“, 12 ( )
and so L or
VP = THY P — THPxY + —j SYPd 3.16
and strive for a stress energy tensor such that
P = TR o — ThPa” (3.17)

which makes the tensor symmetric via the conservation laws of the stress energy tensor and
the current. Considering d,,7#*” = 0 thus means

1 oL
o (BYPY — BP + — VPR = 1
Oa( +28(8u<1>)5 )=0 (3.18)
it is then straightforward to check that
1 oL oL oL
BHeY — 4 voQH 1 & 1o g 1
iamm™ e s s 319
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solves this constraint, and thus symmetrises the stress energy tensor. This is called the
Belinfante tensor, and allows us to write

Ty =T +0,BM | BPF = —BH" (3.20)
where the antisymmtry ensures the good health of the conservation law.

3.2 Stress from metrics

Considering a coordinate transformation z/* — x* 4 €*(x), the induced change in the
action is

68 = / AT e,

oy (3.21)

- / AT (D6, + Bye)

we also have a change in the metric

,  0x° P
Gov = g g 909

(57— 0 (3 -0, g @22
= Guv — (Ou€r + Opey)

and so we can have the more usual definition

B 2 08
vV —9g 59/u/

we can connect the canonical and the metric stress energy tensor through a Belinfante

T = (3.23)

tensor, and their difference is [16]
/ &Pz (T = TY) = / dP20,B°" = / AP0, B* = / dSy B (3.24)
w

over a remote surface, this difference vanishes for well behaved fields.
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4 Ward Identities

We know from theorems such as Ehrnfest theorem that many of the conservation laws
in classical physics are only obeyed at an expectation value level quantum mechanically.
Ward identities examplify this for conserved currents inside correlators of fields. We will
review the derivation of Ward identities and calculate the Ward identities in the conformal
group. This chapter also follows closely from the relevant sections of the yellow book. We
begin by considering an infinitesimal transformation of a field :

P (x) = P(x) — iw,Go®(x) (4.1)

where w, are constant parameters. We take an operator X which contains this field at
different points in space (X = ®(x1)...®(x,)), and its variation under the transformation

as 0.X, and assuming that the integration measure does not change, we have

(X) = % / [d8'] (X + 6X) exp {—S[cb] - / d:caujjjwa(x)} (4.2)

and to first order in w,, since the X’s do not depend on x, we can move it into the derivative:

6X) = [ dad) (j4() X) wnle) (4.3)

similarly, using the definition of G4, we can expand 6X as

0X = —1 Z (P (1) Ga® (i) -+ P () wa (23)

. (4.4)
= —i/dxwa(a:)z:{fb(ﬂ:l) e Ga® () D ()} 6 (2 — 1)
=1

resulting in the local version of Ward’s identity:
)P () (1))

n (4.5)

= =iy 0(z— ) (®(21) - Ga® (m:) - D ()
=1

this gives rise to conserved charges

Qu = / d410(z) (4.6)

which we will now show that generate translations. Start by taking the first field, and
assuming it has the lowest time coordinate ¢ = x{, then surrounding this time sheet by an
infinitely space-like pillbox at time ¢t < ¢ and t. We can integrate the left hand side of
the Ward identity over this surface. The sides of the pillbox will be zero if the fields drop
off quickly enough, and so we will simply have the integral evaluated at the two spacelike

slices. Looking at the definition of conserved charges, we see this results in

(Qa (t4) @ (21) V) = (Qa (1) @ (1) Y) = =i (Ga® (21) ) (4.7)
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where Y is X with the first field removed. Since expectation values in QFT come with time
ordering, we can flip the order of the fields of the second term at no cost, thus resulting in

(01 [Qa, @ (21)] Y]0) = —i(0|Ga® (z1) Y|0) (4.8)
and since this is true for arbitrary Y, we conclude that
[Qa, ®] = —iG,P (4.9)

so the conserved charge actually generates the symmetry transforms. Those of you who
took QFT II with Ira will have seen this result before. A last note is that the derivation is
done in Euclideanised space, to go back to Mionkoski, it suffices to send Q — —iQ)

4.1 Ward Identities in a CFT

We have several generators of symmetry in CFTs, and we will see how each one gives
rise to different conservation laws, and thus different Ward identities. Firstly, we consider
a translation z# — x* 4+ e*. According to 3.11 j#*¥ = T and thus the ward identity
becomes

0
0, (TH'X) 25 T —x;) 5 V( ) (4.10)
given the generator P, = —i0, For rotations, we have the transformations for fields and
coordinates as follows:
' =t + Wt ¥ (4.11)
and 1
F(P)=Lpr®~1+ iiwp,,Sp” (4.12)

555;; = % (nPHa¥ — nPaP). Using the previous definition of
the generator
dat OF
1Gy® = —0,0 — — 4.13
a Swy W dwg ( )

we can see that the generator or Lorentz transformations is
LY =i (xP0" — 2" 0P) + S (4.14)

and the conserved current is

GHVP = T P — THP gV _,_1 oL

31500, (I))S”F’(I) (4.15)

although for the Ward identities we shall use the Belinfante version of the Conserved current;
P = TR o — T a” (4.16)
so the Ward identity becomes

Ou (T a? = T"a") X) = Y6 (& — i) [(2} 0] — 2f0)) (X) — i} (X)] (4.17)
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we can exapnd the L.h.s. as

(B,T" 2P + TP — 29, TH — T")X) (4.18)
=— Zé(x —x;) [wp(?i"’ (X) — a:”a(zp<X)] +((T" = T"")X) (4.19)

where for the second line we used the first Ward identity we had derived. Now we see that
most of the terms cancel, leaving us with

(TP —T")X) = —i > 8 (& — ;) SLP(X) (4.20)

telling us that for Lorentz invariance, the constraint is that the expectation value of Stress-
energy tensor is symmetric apart from points of where fields overlap in the correlator.
Finally, dilations have a# — z# + Az* and so J, = T"x, and since F(®) = (1 — AA)P
the generator of dilations is

Gp = (—iz"0, — iA) (4.21)
and so the ward identity becomes
Oy (TH, 2" X)) = —Z(S(:L’—:L‘i) :Ul»’i()ﬂ + A (X) (4.22)
I - K3 8332]/
acting on the derivative, we find
(TH,X) 25 x — x;) Aj(X) (4.23)

which shows the tracelessness of the stress energy tensor when sandwiched in propagators.

4.2 A "Weird" identity

Erick and I were discussing that it appears to be thee case that most of the texts
online only derive Ward identities for the translations, Lorentz, and scale transformations
of the conformal group, but not the special conformal transformations. To this end I will
derive this Ward identity, and dazzlingly enough, show that it is trivial when using the
other three. We will work with spin ) fields to make our lives easier We begin by looking
at the transformation law for fields under special conformal transformations. Under a
transformation 2.8, the scale factor is A(z) = (1 —2(b-x)+ (b-b)(z-z))*>. You should
derive this result, though as I know you won’t, I’ll leave a derivation in the appendix. I
would encourage you to struggle with it for at least half an hour before looking at the
solution. With this in mind, to first order since

6= d@) =0 o) (1.2)
= (A9~ T () 4.25
_ AM2(a) (4.26)
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we have

gbfy = —2Ax,¢(x) (4.27)
meanwhile, to first order in b we also have
(?;;Z = —0Ma? 4 2z, 2" (4.28)
and so the generator is
iGyp = (—0ta? + 22,2")0,¢ — 2A3,¢(z) (4.29)
This means that the conserved current is
THy =T (= gaya® + 2zqa)v) (4.30)
and so the Ward identity becomes
0
o <(—Tlﬁ‘a:2 + 2T“axamy) X> (4.31)

= Z 5(x —x3) (¢ - ((—0ka® + 2z,2") 9y — 282,0(2)) Gi(2) -+~ d(wn))  (4.32)

We can take the derivatives of the left hand side to get
—x28# (TF,X) = 2(T" 2, X) + 2242,0,(TH*X) + 2(T" 42, X) + 2(T" 2, X)  (4.33)

using the previous three Ward identities, and since we are working wit spin 0 fields, we see
that the one corresponding to lorentz transformations is zero as S*” = 0 for spin 0 fields,
we can write this as

—i Y Oz — 2;)(—2%0pi + 236200 — 27, A:)(X) (4.34)

which is the same as what we have in the right hand side. Thus, this Ward identity does
not bring us anything new.
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5 CFT in 2d

Some of the most studied theories are CFTs in 2D because of amyriad of reasons.
Some of these include, as we shall soon see, the fact that the algebra in 2D is infinite
dimensional, often referred to as the Virasoro algebra, making it a much richer theory than
in other dimensions. This also gives rise to the conformal bootstrap, a way of determining
the properties of the theory based on the constraints coming from said algebra. There
are many other good reasons why 2d CFTs are studied, from string theory, to statistical
mechanics systems. The following section is once again a condensed version of the yellow
book.

5.1 2D conformal maps

The conformal transformations in 2D take a particularly simple form in complex coor-

dinates. To see this, we consider coordinates z# = (2%, z!) and a transformations z# — w*

ow# ow”
uv it af
g _><8z°‘)<825>g

We again use that the new metric should be proportional to the original one after a

conformal transformation; g, (w) o< g, (2), leading to

A T N G N AN 52)
029 ozt )\ 920 071 '

ouw? dwl  Ow Hw!

020 920 + 921 921 0 (5:3)
These conditions are equivalent either to
ow'  ouw’ ow’ ow!
il = i (54)
or to
ow'! ow’ ow’  ow!
90~ o M G0 T ()

We see that this is simply telling us that the functions must be holomorphic or anti-
holomorphic. A good way to express this is using the so-called light-cone coordinate:

z =2 +iz 2 =1(2+72)
z =2 iz 2= L(z—2)
9, = L (9 — in) 9o = 0, + 0

2
0z :%<80+i81) o1 :i(az—ag)

We shall sometimes write & = 9, and 0 = 9> when there is no ambiguity about the
differentiation variable. In terms of the coordinates z and Z, the metric tensor is

0L\ (02)
uv = g = (57)
g (;0) 20
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where the index p takes the values z and z, in that order. This metric tensor allows us to
transform a covariant holomorphic index into a contravariant antiholomorphic index and
vice versa. The antisymmetric tensor €,,, in holomorphic form is

Y (U RV R
=4 0 2 0

In this language, the holomorphic Cauchy-Riemann equations become simply

Ozw(z,2) =0 (5.9)

whose solution is any holomorphic mapping (no z dependence):

z — w(z) (5.10)

This splits the complexified tangent bundle into holomorphic and antiholomorphic parts:
TM @ C =TSN ¢ 170D )M (5.1)

this means that the manifold must have a complex structure. In 2D, this roughly translates
to orinetability, but its implications are far reaching. For starters, it means we can decom-
pose fields into ®(z,z) = @1 (2) @ Pr(z), exhibiting independent dynamics. As we will see,
this leads to two copies of the algebra, and the weights of the algebra will also decompose
into A = h + h. The far reaching consequences will become evident as we move through
the section.

It is a known fact that complex endomorphisms of C are conformal maps,

dw = (‘flw) dz (5.11)

z

meaning that the conformal group in 2D is the set of these maps. Each coefficient in
the Laurent series determines a generator of conformal symmetries, and thus makes the

conformal group infinite dimensional.

5.2 Local vs global conformal group

The endomorphisms that form the conformal group must be invertible by definition of
a group. Nonetheless, it is often the case that topology can present obstructions to global
trivialisations of these fields. More usual examples of this that come to mind will be Dirac
monopoles arising from non-trivial U(1) bundles over S? as we cannot define the gauge
field in both hemispheres (globally). This is a similar behaviour to the one we see in the
conformal maps; we must divide them into the ones that can be defined globally, and the
ones that can only be defined locally. The former is referred to as the Special conformal

group, and can be defined as

az+b
= — — = 1 .2

where a,b,c,d are complext numbers, and the so called projective transformations.
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We can repackage the numbers into a matrix with unit determinant

= (23)

and thus the global conformal group in 2D is isomorphic to SL(2,C), which is isomorphic
to the Lorentz, group. To see why this is the only possible transformation, we should not
have any branch point or essential singularity. This is because at branch points the function
is multi-valued, something that would kill the invertibility condition. Similarly, essential
singularities have wild behaviour near the poles such as e! /z making them not well defined,
and thus disrupting the group behaviour. The hallmark of the latter is Laurent series with
infinite negative powers.Thus, only poles are admissible, and thus, the function must be a

ratio of polynomials f(z) = 58, but if P(z) is of order higher than one, the neighbourhood

of the solution gets wrapped around several times around the origin, and thus cannot be
inverted. Thus, since the same argument goes for Q(z), they both must be linear, yielding
the above result.

5.3 Conformal generators

We now look at local generators that need not be defined globally. These are the

n+1

transformations of 2/ = z+¢€(z) €(z) =2 ¢s2" 1" where we are Laurent expanding around

the origin. This leads to the expansion

¢ (z’, 2’) = ¢(z,2)
=9 (z', Z') —€ (z') ao (z', Z') —€ (2’) a'¢ (z’, 2’) (5.16)

or
5¢ = —e(2)0¢ — €(2)0¢
= {enlnd(2,2) + enlnd(2,2) } (5.17)
where we have introduced the generators

by = —2""10, 0, =—-2""0; (5.18)

it is a simple calculation to show that the generators obey the following algebra

[y bm] = (0 —m)lpim
[ln, 0] = (n— m)lpim (5.19)
(£, 0] =0

which, as promised previously, factorises into two identical algebras that form a product
group. This algebra is also called the Witt algebra. The subalgebras formed by I,1_1,1;
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form the global conformal group; [_; = —3, represents translations, lj = —z0d, represents
rotations and scale transformations, and [; generates special conformal transforms. A caveat
to mention is that z and Z are in principle independent variables, though in 2d we only have
two coordinates, and so it would seem like we have an extra two. To fix this, we must take
the hypersurface in z, Z space where z = z*. In particular, the generators that preserve the
real surface 2, 21 € R are the linear combinations

lp + by and i (6, — £y,) (5.20)

In particular, €y + o generates dilations on the real surface, and i (60 — Zo) generates
rotations.

5.1.4. Primary Fields

Given a field with spin s and scaling dimension A, we define the holomorphic conformal
dimension as

h:%(A—ks) B:%(A—s) (5.21)

and a quasi-primary field transforms as

# (0, 0) = (Cf;”)h (‘f;”)h o= 2) (5.22)

The above shows that a quasiprimary field of conformal dimensions ( h, h ) transforms like
the component of a covariant tensor of rank h+h having o " z " indices and h " z " indices.

We can expand the map around the identity; w = z + €(2)

5€,€¢ = qb'(z, 2) - ¢(Zv 2)
= — (h¢0.€ + €0.0) — (hgOs€ + €0z¢) (5.23)

To answer Margit from last week too, the difference between primary and quasi-primary
fields is that primary fields transform like above under conformal transformations, while
quasi-primary transformations only have these properties under global conformal transfor-
mations. Fields that are not primary are called secondary. The transformation rule for
fields becomes

ﬁ (Cf;,:) B i <C§:) B (1 (21,21) - - - b0 (20, Zn)) (5.24)

5.4 Ward identities, again

Recall we derived the conformal Ward identities last lesson
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al‘” =1 87‘@’2/
e (T (2)X) = =i ) 56 (x — 2;) (X) (5.32)
=1
(TH@)X) = =Y 6 (x —2:) Ai(X)
=1

Now, before diving into computations, we will derive a useful formula that is valid distri-
butionally (when integrated over a two-chain). The claim is that 951 = 276(2)d(y)

So lets show that this is the case. I use the proof from [17] but I flesh out the details
that I had to work through for it to be clear.

Claim( Cauchy-Pompeiu): Let U C C be a bounded open set with piecewise-C!
boundary QU oriented positively (see appendix B), and let f : U — C be continuous with
bounded continuous partial derivatives in U. Then for z € U:

_ 1 f(&) 1 of . dENdE
f(Z)—ﬁ an—Zd To Ua*g(f) £— 2

(4.1.1)

Proof:

Fix z € U. We wish to apply Stokes’ theorem, but the integrand is not smooth at z.
Let A,(z) be a small disc such that A,.(z) CC U. Stokes’ theorem now applies on U\ A,.(2).

We can now use the generalised stokes theorem:

Lo

applying this to the following equation

f(§) f© . (f(é) )_ Of dEAdE
d B 7d - d 7d - — . 1.
/6U -z § /"’MZ) §—2 ‘ N\A(z) \§— 2 ¢ /U\Ar(z) o€ © §—z (4.1.2)

The second equality follows because holomorphic derivatives in ¢ have a d€, and when

we wedge them with d§, we just get zero. We now wish to let the radius r go to zero. Via

the exercise above, g—fg(g) dgfig is integrable over all of U. Therefore,
d¢ N dE dé N dE
lim O gdends _ [ OF dends (4.1.3)
=0 Jinan(z) 06T §— 2 vd§ T E—z

The second equality is simply swapping the order of d¢ and d¢. By continuity of f,

lim 1/ &df = lim L 27rf(z +re?)df = f(2). (4.1.4)

r—0 271 OA(2) f -z r—0 27 0

where we have first taken £ — £ + z and then used Jpz = iz to go from one equality to the
other.
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The theorem follows from this. Now we can apply this to an arbitrary function as
follows; consider a (not neccessarily holomorphic) function f with no support in OM

1 f(z d:v/\dy "
HO=5 [ LHF -2 | HEEAY *

then the integral over the bondary is zero due to the lack of support, and, while the

area integral [/ p states that

0 1
0zZz—C

as a density. This is equivalent to the result promised [J. The same result is obtained

= 716®(z —¢).

exchanging z <+ z. There is a similar proof in [1] but this one is more general as it does
not require the function to be holomorphic and it teaches you (me) the Cauchy—Pompeiu
theorem. We can apply these to the Ward identities, which become

210, (Te, X)) 4 2705 (T, X)) = Z Oz —— 0w (X) (5.4)
210, (TezX) 4 270, (Toz X)) = Z 0 —— 0y (X) (5.5)
2T X) +2(T:.X) = Z & (z — ;) Ay(X) (5.6)

—2 (T X) + 2 (T5. X) = Z 8 (x — x7) 8(X) (5.7)

we can easily combine the latter two as

om (T5. X Z a-i (X) (5.8)

o (T X)) = Z )

=1

wal

we can now re-use these in the first equations to find

0- {(T(z,z)X> - Z [ ! D, (X) + %<X>] } =0 (5.10)

Z — Wi (z —w;

0. {(T(Z,Z)?Q -2 [_ L o (x) + }“_)2<X>]} =0 (5.11)

where we have introduced a renormalized energy-momentum tensor



Thus the expressions between braces in (5.10) and (5.11) are respectively holomorphic
and antiholomorphic, we may write

(T(2)X) =) { ! D, (X) + h"<X>} + reg. (5.12)

= lz—w (z —w;)?

where "reg." stands for a holomorphic function of z, regular at z = w;. There is a sim-
ilar expression for the antiholomorphic counterpart. Keep in mind that this relies on the
assumption that T'(z) is everywhere well-defined, and so 7'(0) should be finite.

6 Operator Product Expansion

Typically, correlation functions have singularities when the positions of 2 or more points
coincide. The Operator Product Expansion (OPE) is a representation of a product of
operators at distinct points x and y by a sum of single well-defined operators as x — v,
multiplied by a function of (z —y). One can interpret this as a multipole expansion, as seen
from far away, that is

01(0)0s(x) = > Ci(x)0i(0)

all operators
i

= Y | Cu(@)04(0) + CE(2)8,04(0) + CL* ()90, 05 (0) + ... | ,

~~

rimaries . .
p - primaries descendants

where © < 1. We should be aware that the OPE is meaningful only within correlation
functions.
What about C,, can we predict them? Let’s see, consider the 3-point function:

Al—Ag—Ag
Clax 2.y | 2
(01(0)02(x)Ok(y)) = |$|A1+A2*An|y‘2An <1 - 5t 3

y Yy
Ciak -y
= e Aaypa, (1 (A7 A2 = Ae)m g

=Y [Cu(2) (0w (0)Ok(y)) + C ()0, (O (0)Ok(y)) + -]

C,{(.CU) C'I:(x) Yu
_ N . 6.1
e e (6.1)

where in the second line, we’ve Taylor expand for z < 1 and in the third line we’ve used
the OPE. It is straightforward to identify:

Crax
Cr(z) = (oAt Ay Ck(x)

B Clok (Ap — Ay — Ay) z#
- ‘x’AI“!‘A?_Aﬁ 2AI{ ’

(6.2)
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Thus, for example, the four-point function can be written as:

B N e, (0259 O5(25)O4(24))
<01(ZC1) e 04(1’4» (O;E) Z‘i: 01250,{34 T;]bul K (.1‘2 - xl)ﬁziq s axgn ( C,,i34

fixed by conformal symmetry

= Z Ch2xClza FED (21, ... 14),

where k represents the set of primaries with scaling dimension A, and spin ¢, and F,(.QA’Z) (x1,...,24)
is called conformal blocks.

Remember when we told you that knowing the structure constants Cj;, and the scaling
dimensions A allows you to calculate any other correlation function in your theory? Yes?
Well, this is what we meant. Because, we can use the OPE to write any correlation function
as a sum of 3 point functions.

If you notice, for this example, we took the structure constants Cia, and Cyss, what
if instead we use Ci3x and Cy24? This will not change the final result. So, we have an

associativity property, which pictorially looks like:

(Or(w1) -+ Oa(wa)) =Y | A

(6.3)

The last two equations are called Bootstrap equations, and sometimes people say that a
CFT is a set of {A;, Cjji }, which obey the Bootstrap equations (as an alternative definition
of what a CFT is).

Coming back to 2 dimensions, the OPE of the stress energy tensor with a primary field
¢ is written from (5.12) as:

7)o, ) ~ g0, ) +

T(2)0(0,1) ~ szl 0) + O, 0). (64)

8w¢(w7 u_})

Z—w

where here ~ means equality up to regular functions as z — w, and again, this expansion
makes sense only within correlation functions.
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7 Examples

In this section, we’ll work out some examples of CFTs and discuss some of its conse-
quences.

7.1 The free boson in d # 2 dimensions

One of the most studied theories is the free scalar field theory, this theory has a con-
formal symmetry as well. To warm up, let’s calculate its 2-point function in the usual way

and compare with our predictions. The action of the theory is

S = ;/dd:v 0, ¢
-2 / d'z d'y ¢(x) A, 1)6(y). (7.1)

with A(x,y) = —6(z —y)9%. To calculate the 2-point function we use the Green’s function:

K(z,y) = (To(x)o(y)) = Alz,y) ",

where K (z,y) = K(z — y) is the solution of the differential equation

—0?K (z) = i6(x)
/ddx 2K (k)e e = i/dd:v e~k

So that

dk 1 1
K — A 1. 2% 4 ~—
(z) / 2r)d k2 +ic" |z]d-2

Which is what we expected, since we know that this theory is conformal. Therefore its
2-point function should behave as K () ~ 1/|z|?*2¢, and we know that the scaling dimension

of the field ¢ is Ay = % in any dimension d.

7.2 Toy model for AdS/CFT

Let’s consider an AdSs space, with the following (Poincaré¢) metric

dz? + di?
4ot = 40
z
Suppose that we have a very massive particle in this background, then if we want to
study what is the minimal path that a particle follows from a point z; to a point x5 in

the z—axis. Then, following the Feynman idea, we take the 2-point function as the sum of
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all probabilities of the paths that the particle can take to go from one point to the other,
namely,

Gy az) =y e o2,

with the action being the one that describes relativistic particles of mass m, S = m ft? dr W .
From the metric, it is clear that the particle will avoid going from the boundary z = 0,
because it’s very costly (it has to travel a distance proportional to 1/22), so it will prefer

to go through the "bulk". Since, the mass m is very large, then the most likely path will

be governed by the one that minimizes the action (geodesic or classical solution), so that

Go(x1,x2) ~ el L = minimal length.

One can show that geodesics in AdSs are given by semi-circles, as shown in Figure 4,

2(z)? = R* — (z — 21 — R)?, (7.2)
where here we can identify xo = z1 + 2R.

Z

A

Figure 4. AdS, geodesics are semi-circles.

That is, (7.2) solves the equations of motion described by the Nambu-Goto action (in
this case, this are just fancy words to say the action that describes the length of a free
particle in a specific background):

Syg = /dﬂ/gw,:i:“j:l,. (7.3)

One can show that this action is reparametrization invariant, i.e. invariant under the trans-

formation 7 — f(7) (we can start to suspect from here that 1d CFTs have reparametrization

2241
22

invariance), therefore we can choose z = 7 and the classical solutions of Syg = f dx
are the semicircles described in (7.2).
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Figure 5. AdS, geodesics are semi-circles.

Let’s consider half of the semi-circle (the full length is twice this result), and to avoid
the 1/z divergene as z — 0, we take z; = £. So, we want to calculate the length of the arc
shown in Figure 5

The initial and final points are z; = 21+ R—VR? — £2 ~ 21+¢2/(2R) and vy = z1+ R,
respectively. So, the length of the arc is:

mo 2yl [ R
/xi * 22 /1 xRQ—(x—:cl—R)Q
Ty

T
R .

11 Ty — 21 x; —x1 — 2R
= — In .

2 l’f—x1—2R Tr; — 1

1 2R\?
=-In|(Z) -1

0| (%)

~In (”) (7.4)

Hence,

GQ(R) — e—m.% _ e—2m1n(%) — (%)27”' . (7.5)

Now, what was the 2-point function of a 1d CFT with points? It is

1 1 1

2(z; — )2~ [2(R—<2/(2R))PA ~

(O(2)O(x1)) = SIS

(7.6)

we can see that both correlation functions are the same with A = m, up to this ¢ factor.
But, that’s fine because such finite result correspond to the renormalized operators O. If we

work with bare operators, say Oy, then by multiplicative renormalization O(z) = e~ Oy(z)
and
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£ \2A
(Oo(x)0s+ R)) = (55) -

So, the equilavence of the 2-point functions is now clear. We have started from AdS
very massive dynamics in 2d and it generated an effective boundary behavior described by
a 1d CFT.

What happens if we consider 3 very massive particles that meet at a point P in AdS, as
shown in Figure 67 We do the same exercise: integrate over all posible trajectories that meet
at P and then find the point P that minimizes the free action S = mif; + mals + msls,
where £, are the lengths of the arcs with initial points x,, final point zp, and radius
Ry = Ta—Pl 2 for 0 = 1,23,

2lzp—zal
One can show that,

(o —xp)* + 2%
EZPpP '

fo=1n

(7.7)

And by solving 0,,S5 = 0;,5 = 0, then we find

G3($1,J}2,x3) = C(mlij,mg) y (7.8)

= |$1 - $2|m1+m2—m3|x1 _ l.?)‘ml-‘rmg—mz‘x? _ x3|m2+m3—m1

which resembles the 3-point function of a CFT with A, = m,. Note that the structure
constants in this case are completely determined by the masses, which are the only param-
eters in our system. However, in an interacting theory in AdS, the C’s must depend on the
coupling constants as well.

Z

X1 X, Xp X3
Figure 6. AdS; geodesics are semi-circles.

So, we can see that interactions of very massive particles in the AdS bulk, correspond
to CE'T correlation functions in the boundary. On the other hand, if we start from the CFT
side, then correlation functions of operators with large scaling dimensions in the boundary
correspond to massive particles moving through geodesics and interacting in the AdS bulk.
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For completeness, what if we consider 2 particles that meet at the point P, should we
get anything interesting? The answer is yes, if we follow the same exercise, we find that if
the masses are different, then the minimization procedure has no solution, therefore there
is no chance that this process happens (CFT 2-point function is zero in this case). But if

the masses are the same, then we arrive at the same CF'T 2-point function obtained before.
Therefore,

5m1m2
Ga(z,y) = o=y

as expected from the CFT side for primary operators with scaling dimensions m; and ms.

7.3 The free boson in 2d

This is one of the simplest CF'Ts, with the following action

S = % / d*z 9,00"¢. (7.9)

Following the same procedure as before (in Euclidean signature), we want to calculate
K(z,y) = (¢p(z)p(y)) = K(|x —y|) = K(r). So, in polar coordinates, we have the equation

Thus,

B
|
<
N
I
s
—~
8
~—
=
<
=
I

1
-1 —yl? tant.
o n(|z — y|°) + constan

If we take z = x1 4+ izs and w = y; + iyo, then

(62, 2)p(w, B)) = —i (In(z — w) + In(% — @)] + constant.

This may look bizarre, since we know that our theory is a CFT, why does the 2-point
function have this form? The answer is because ¢ are not quite the primary fields (their
conformal dimension is 0). But, if we consider the derivative of the previous correlation,
we get,

1t
A (z —w)?’

0.0 <¢(z7 2)¢(w7 u_))> -

and similarly for 059s,,, so
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1 1

(0:9(z, 2)Owp(w, w)) = G w) (holomorphic)
1 1
(0:0(2,2)0gp(w,w)) = _Em (anti-holomorphic) (7.10)
Therefore, the OPE on the holomorphic part reads:
00(2)00(w) ~ — (711)
2ot 47 (2 — w)?’ '

where d¢(z) = 0,¢(z). Note that the scaling dimension of partial¢ is Apgrtiaig = 1 and
since this is a scalar field it has zero spin, so that h = 1.

The stress-energy tensor for this system is 7}, = ((%qﬁ@l,qﬁ — %nuyﬁpgbapgb), which in
{z, z} coordinates has the form:

T(z) = —27T,, = —2m : 0p0¢p := =27 ilinm (0 (2)0p(w) — (0p(2)0d(w))) (7.12)

the mixed terms vanish, as can be shown by using the metric form in (5.7). And we have
used normal ordering : - : to ensure the vanishing of the vacuum expectation value. We
then proceed to calculate the OPE of T'(z) with d¢, as follows

T(2)0¢(w) = =27 lim, (96(2)06(2") — (06(2)96(2))) I (w)
~ —4m (0(2)0¢(w)) 0(2)

(Wick’s theorem)

(1) 96
- < 47r) EEmE
00w) | o)

(expand around z=w) (Z - w)2 (Z — w) ’

From (6.4), we can see that hgy = 1, as expected and thus, is a primary field. If we
now calculate the OPE of the stress-energy tensor with itself, we arrive

T(2)T(w) = 47 : p(2)0(2) : : Dp(w)Dp(w) :
= 42 lim (90(2)00(=") — (96(2)06(=))) lim (96(w)d0(w) — (96(w)00(w))
~ 47 (2) (06(2)06(w))” + 47*(4) (06(2)0p(w)) D ()06 (w)

(Wick’s theorem)

L, 00)06w)
(z —w)* (z —w)?
N 1/2 A 0¢(w)0¢(w)  4m(1/2)0y : Id(w)0d(w) :
(expand around z=w) (Z — w)4 (Z — w)2 (Z — w)
_ 12 2Tw) | 9,T(w) 13)

(z—w)*  (z-w)*  (z-w)
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We can see, comparing to (6.4), that 7" is not a primary operator because of the presence
of an anomalous term %, compared to the d # 2 case, where the stress-energy tensor
is a (quasi) primary operator. Though, we can read off its conformal dimension from the
second term, which gives us hr = 2 (this matches our expectation that 7}, is a spin 2 field
with scaling dimension Ap = 2).

7.4 The free fermion in 2d

The free fermion action

1 _
S=3 / d*x W10, W, (7.14)

with 70 = ¢!, 4! = 02, and vy = io3. If we expand the term:

. 0y + 10 0 0: 0
0 i — 3 — 0 1 :2 z
v y"0, = 0y + 10" < 0 80—1'81> (0 @).

And then, by considering ¥ = (g) , the action reads

S= / o (G509 +vdv) (7.15)

with equations of motion

o =0, (holomorphic solution)
o =0 (anti-holomorphic solution) (7.16)

By a similar procedure as the previous section, we can calculate the 2-point functions

W()Y(w)) = %z _1 " (holomorphic)
W (2)(w)) = % B _1 o (anti-holomorphic)
(¥(2)¢(w)) = 0. (7.17)

So that, we can read the scaling dimensions of the primary fields ¢ and ¢: A, = Ay =
1/2. Also, we can get

D0 6(w) = 5 .
Ot (W) =~ s
T? = 2o

(7.18)
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The renormalized holomorphic energy-momentum tensor is T'(z) = —m : 9(2)0¢(z) :.
So, the OPE expansion of T with ¢ is

T(2)¢(w) = —m : (2)0¢(2) : P(w)
~ 7 (Y (2)P(w)) 0P(z) — m (D(2)y(w)) P(2)

(Wick’s theorem)

1op(z) 1 4(2)
Niz—w—i_i(z—w)Q

L1200 )

(expand around z=w) (Z — w)2 (Z — w)

(7.19)

Comparing with (6.4), we can see that hy = 1/2, as expected for a spin 1/2 field with
scaling dimension 1/2. This is thus, a primary field.
If we calculate the OPE of T' with itself, we get

T()T(w) = 72 : $(2)00(2) : : Y(w)O(w)
1/4 oT(w)  IT(w)
Gow  -w? (-

and from (6.4), we conclude that T is not a primary field, but has conformal dimension

~

o)’ (7.20)

hp = 2. The anomalous term is called central charge and is non-universal.

8 The central charge

The general OPE of the (renormalized) stress-energy tensor with itself has the form:

c/2 2T (w) n oT (w)

T()T(w) ~ (z —w)* + (z—w)?  (z—w)’

(8.1)
where c is the model-dependent central charge, determined by the short distance behavior
of the theory. In the case of the free-boson and the free-fermion the values of ¢ are 1 and
1/2, respectively.

Now that we know that 7' is not a primary field, then we should ask ourselves: how
does T transform?

For this, we can use that the infinitesimal variation of a primary field (or chain of

primaries) O under conformal transformations is®:

1
21

5.0(w) = — fc dz e()T(2)O(w), (8.2)

replacing O by T', we get

9The derivation of this is shown step by step in chapter 5.2.2 of [1].
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5. T(w) = —% b d: ()T ) (8.3)

— o e(w) = 2T ()e(w) — e(w)DuT(w) (8.4)

To know the full action of this transformation, we have to "exponentiate" the previous
generator and we obtain that under z — w(z)

T(w) = (f}”) [T(2) - £ fui2)
T(w) = (?j>_2T<z> + £ L), (5.5)

where {w;z} = is the Schwarzian derivative of w evaluated at z.

d3w/dz3 3 <d2w/dz2 2

dw/dz — 2\ dw/dz

And in the second line, we used the identity:

2
s = (9 fwwd + fwiz)

By looking at (?77?), we see that T is not a primary operator because of the presence
of c¢. However, this should be a consequence of local group because we know that for the
global conformal group, T is a (quasi-)primary operator. So, if we focus on the SL(2,C)
part, i.e. the transformations of the form

az+b

d—bc=1
cz+d’ “ ¢

w(z) =

then we can show that they have a vanishing Schwarzian derivative. Which is what we
expected. So, we are safe!

9 More on ¢

Last time, we briefly touched upon one of the interpretations of the central charge
c. Today, we will make this more precise by showing how the free energy of a plane
and in a cylinder can be related to each other by means of the central charge. We will be
following [18|. We consider a cylinder, which can be parametrised by the complex coordinate
w = o + i7 with ¢ ~ ¢ 4+ 27 which ensures the periodicity of the cylinder. We can map
this to the plane as z = e~ so that the o coordinate now parametrises the circles, in the
plane, and 7 the size of these. Since this transformation is holomorphic, it is conformal,
and we can go on to calculate how the stress energy tensors are related using 8.5. One can

write

T<Z)plcme = _Ziz (T(w)cylinder - TZS(Z,’U))) (91)
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Figure 7. Conformal mapping from cylinder to plane

—i)32 —7)22)2
S(z,w) = ((_Z,)Z) - g(((_gz)Q) — 143/2=1/2 9.2)

And so we can write
c

T(w)cylinder = _Z2T(Z)plane + 24 (93)

Now consider a theory with vanishing ground state energy on the plane: (Tp,aney—o.- We
can see what this means in the cylinder by using

H = /dO’TTT = —/dU(Tww +Tﬁ,w) (94)

And so F = % with c=1 for a free scalar, so that the energy density is —12

10 Radial Quantization

Staying with our friend the cylinder states live at constant ¢ and are evolved by H = 0.
In the plane, the dilation becomes D = 20 + z0. The states now live at constant radius,
and their evolution operator is the Dilaton. This is called radial quantization as now we
have a radial ordering operator as opposed to time ordering. Clearly, sending 7 — —oo
corresponds to z — 0. We can now assume the existance of a vacuum state |0), and that in
the infinite past, the field is free, so we can write |¢i, ) = lim, s 0 ¢(2, 2)|0). In Euclidean
spacetime, the coordinate 7 = it must flip sign under a hermitian conjugation so that t is
left unchanged. Thus, we make the definition [¢(z, 2)]T = 272"22h¢(1/2,1/z) where ¢ is a
quasiprimary field. The powers of h and h come from the fact that we want a normalisable
state when contracting it with the in state;
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(Gout | ¢in ) = _lim  (0[¢(2, 2) o (w, w)|0) (10.1)

= lim 7720, =2h(0|6(1/7,1/2)d(w, @)|0) (10.2)
= lim ¢ (0]6(£,€)¢(0,0)|0) (10.3)

so the last equation is independent of £ because of the form of the two point function of
quasiprimary operators.
We may expand conformal field ¢(z, z) of dimensions (h, h) as follows:

¢(Z, 2) - Z Z Z_m_hz_n_ﬁ(bm,n (10.4)

meZ neZ

1 1 7
Qbm,n _ Tm fdzzm—l-h—lm%dzzn—l-h—lqs(z’z) (105)

T

conjugating,

o(z,2)t = 3" N Emha ket (10.6)

meZneZ
while the previous definition gives

oz, 2)f = 2722 "hg(1/2,1/2) (10.7)
= 27N N g g (10.8)
meZnez
=> > bmnz " (10.9)
meZneZ
And so we require
(bjn,n = ¢—m,—n

For the in and out states to be well defined, we require ¢, ,|0) =0 (m > —h,n > —h).
Henceforth, we will use only the holomorphic part of the fields to ease the notation. The
radial ordering of fields is such that

D1 (2)Po(w) if |z]| > |w]

Bo(w)P1(2) if |2] < |wl (10.10)

R@l(z)ég(w) = {
For a(z) and b(w) holomorphic, we consider integrating clockwise around z:

?{ dza(z)b(w) (10.11)

We can deform the contours as follows: consider two circles of radii w 4 €. Since we
have not crossed any poles, this integral will be equivalent to that of the contour around w.

?{dza(Z)b(w) = g dza(z)b(w) — g dzb(w)a(z) (10.12)

= [4, b(w)]
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with

A= fa(z)dz (10.13)

Then for two operators that can be written as holomorphic densities, we find
[A, B] = %dw}( dza(z)b(w) (10.14)
0 w
allowing us to relate the OPE into operator language.

10.1 Virasoro algebra

We had seen that (looking only at the holomorphic part as usual)

5 (X) = —% ) dze()(T()X) (10.15)
if one defines
Q. = % dze(2)T(z) (10.16)

it is easy to see, that using the previous results, we can rewrite this as
5P (w) = = [Qe, (w)] (10.17)

and so Q). generates conformal transformations. Consider the expansion of the holomorphic
stress energy tensor, which has conformal weight 2:

1
T(z)=> 2" 2Ly Ln= 5 j{dzz”HT(z) (10.18)
neZ

we can also expand the infinitessimal coordinate change as

e(z) =Y 2"e, (10.19)

neZz

so that

neZ

meaning that the mode operators L, generate the local conformal transforms on Hilbert
space, thus drawing an equivalence with the generators of conformal mappings of space.

Using the residue theorem for higher order poles

m—1
lim d
(n—1)! z=cdznt

Res(f,c) = [((z = )" f(2)]
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it is the straightforward to compute

_ 1 m—&-l% n+1 C/2
[Ly, L] = Gri)? %dww g dzz Gow) (10.21)
2T (w) oT (w)

+(Z — ) + - w) + reg. (10.22)

_i m+1 1 n—2
2 ) ww {12 (n+1)n(n — DHw" “+ (10.23)
2(n + Dw"T(w) + w07 (w)} (10.24)
%cn (n2 —1) bngmo + 2(n + 1) Lipsn (10.25)
— L dw(n 4 m + 20T (w) (10.26)

2mi Jo

%cn (n — 1) Ont+m,0 + (n—m)Lpin (10.27)

10.2 Hilbert Space

We know that the vacuum of a theory should be invariant under the (global) symmetries
of the theory, and so in this case we should demand L_1, Lo, L1 should yield zero when
acting on the vacuum. This is because the vacuum should preserve the global structure of
the theory, but local generators can create excited states as we will see. The invariance of
the vacuum under global transformations is also a requirement for the uniqueness, which
we would need if we are in a phase with no SSB. Since the Hamiltonian is Lo + Lg, we also
find that this implies that the energy of the vacuum is zero. Looking at the definition of T’
10.18 and requiring it to be finite at z = 0, we require

L,|0) =0

£j0) =0 > 1) (10.28)

Meaning that the VEV of the stress energy tensor is zero (0|T(2)|0) = (0|T(z)|0) = 0. The
way we will build our hilbert space is by acting on the vacuum with L,, as we will see. We
can figure out the action of L, on a field as

[Ln, p(w, )] = 7{ dz2"T(2)é(w, W) (10.29)
= 5§ dza {?f““wig + ai(w’f ) 4 reg. (10.30)
= h(n + Dw"¢(w, w) + w"o¢(w,w) (n > —1) (10.31)

we can now consider a state with weight h,h: |h,h) = $(0,0)|0), and clearly, Lo|h,h) =
h|h,h) and similarly for Ly. This means that h) is an eigenstate of the hamiltonian. We
also have ladder opperators with n > 0 anihilating this state.

[ m¢m] :[ ( - 1) ]¢n+m (10.32)

in particular,

(Lo, ¢m] = —mm (10.33)
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and so ¢,, acts as raising and lowering operators for eigenstates of Lg. Similarly, we
can also use L_,, as operators that increase the conformal dimension of a state by m:
[Lo, L_n] = mL_,, we can then apply successive iterations of the generators to create
states with different h L_p L_p, - L_g, |h). where ' = h+ ki +ka+---+kp,=h+ N.
These states are descendant and they form a representation of the virasoro algebra as the
subset of states generated by (h) is closed. These subspaces are labeled by h and are called
Verma modules. N is called the level of the descendant, and there are p(N) at a given level
N where p(N) is the partitions of N. We can have a generation function for this:

s = =g = 2o 1039
n=1 n=0

10.3 Canonical quantisation of cylinder

As usual, we begin by considering the simplest examples and build from there. We want
to quantise a free scalar on a cylinder with circumference L so that ¢(z + L,t) = ¢(x,t)

and we can Fourier expand

o(z,t) = Z e2min/Ly, (1) (10.35)
1 .
on(t) = 7 /da:e_2m"z/Lg0(x,t) (10.36)

In terms of the Fourier coefficients ¢,,, the free field Lagrangian

;g/dw {(61590)2 - (5m<p)2} (10.37)

becomes

1 Lo 2mn 2
29LZ{S0n90—n_ <L> sonso—n} (10.38)

The momentum conjugate and commutation relations are

TTn = ngb,n [SOny 7rm] = i0nm (1039)

We make the creation/anihilation operators a, and a), as usual

an, = (2mg|n|on + im—_p) (10.40)

1
VAmg|n|
such that [a,,a,,| = 0 and {dn,&jn} = Omn; we will deal with ¢q later as it evidently

diverges. We can now normalise them as

iv/=na', (n<0) iv/—nal, (n<0)

Gy, =
—-n
and treat the zero mode g separately. The associated commutation relations are

aﬁ{‘man (n>0) {_Md_n "oy (10.41)
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[@n, @m] = N0ptm  [An,Gm) =0 [Gn, Gm] = N0ptm (10.42)
The Hamiltonian is then expressible as

1

=2 L?TO +— Z (a—nan + a_pay) (10.43)

n;ﬁO
The commutation relations lead to the relation
2
[H,a_p] = %ma_m (10.44)
which means that a_,,(m > 0), when applied to an eigenstate of H of energy FE,
produces another eigenstate with energy E + 2mmw /L.
Since the Fourier modes are
i

= n—Gn 10.4
o= o (4 =) (10.45)

the mode expansion at ¢t = 0 may be written as

i ,
p(r) = o+ —— Vi 2 Z —a_y)e2mine/L (10.46)

The time evolution of the operators g, a,, and a, in the Heisenberg picture follows
immediately from the above Hamiltonian:

2olt) = ¢o(0) + ot

gL
an(t) = an(0)e=2mm/L (10.47)
G (t) = ap(0)e= 2™t/ L (10.48)

In terms of constant operators, the mode expansion of the field at arbitrary time is
then

1 i 1 in(x— = min(x
o(x,t) = po + gL7T0 + Jing Z " (ane27rzn($ O/L _ g, e2min( +t)/L) (10.49)

If we go over to Euclidean space-time (i.e., replace ¢ by —i7 ) and use the conformal
coordinates

5 = 2r(r—ia)/L £ _ 2m(r+iz)/L (10.50)

we finally obtain the expansion of ¢ and its derivative as

{ ] 1
2) = g0 — ——moIn(2% Y~ (anz " aE " 10.51
o(z,2) = o 47rg7T0 n(zz) + JTrg 20 (anz ™"+ anz ") ( )
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i0p(z) = M0 L 3z (10.52)

n#0
We may introduce two operators ag and ag :
_ o

ag =ag = 10.53
0 0 \/W ( )

which allow us to include the zero-mode term into the sum:
i0p(z) = ! > anz ! (10.54)

VArg ~ " '

an id s creation operator of "right-moving" excitations, whereas the a,, are associated
with "left-moving" excitations.
6.3.2. Vertex Operators

Since the canonical scaling dimension of the boson ¢ vanishes, it is possible to construct
an infinite variety of local fields related to ¢ without introducing a scale, namely the so-
called vertex operators:

Val(z,2) =: ¢ . (10.55)

The normal ordering has the following meaning, in terms of the operators appearing in
the mode expansion:

] « 1 _
va(2,Z) = exp {zag@o + JIrg Z - (a—nz" + anz")}
n=0 (10.56)
o

o L snig s
xexp{47rg7r0 \/‘ﬁ;n(anz +anz )}

Within each exponential, the different operators commute.

We shall now demonstrate that these fields are primary, with holomorphic and anti-
holomorphic dimensions

2

W) = h(a) = 8%9 (10.57)

We first calculate the OPE of 0y with V:

Op(2)Valw,0) =3 (izfna (2) : p(w, w)"
n=0
1 1 e i)™ .
- _47Tg 2 — W g (T(l _)1)' : QD(’LU,u)) L, (1058)
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Next, we calculate the OPE of V,, with the energy-momentum tensor:

T(eWaw,@) = —2m9 S Y0 00(2)00(2) = o, w)"
n=0
1 1 (i)™ 2
~ = — Z — p(w, w)"*
8mg (= oow).2 — (n—2)! (10.59)
+ - ! -3 (Zz!) n : 9p(2)p(w, @)
n=1
a? Vy(w,w)  OpValw,w)
N87rg(z—w)2+ z—w

To the n-th term in the summation we have applied 2n single contractions and n(n—1)
double contractions. We have replaced dp(z) by dp(w) in the last equation since the
difference between the two leads to a regular term. It is now clear by the form of this OPE
that v, is primary, with the conformal weight given above. The OPE with T has exactly
the same form.

In order to calculate the OPE of products of vertex operators, we may use the following
relation for a single harmonic oscillator:

e e = Atz (A1) (10.60)

where 4; = a;a+ F;al is some linear combination of annihilation and creation operators
(this relation is demonstrated in App. 6.A). Since a free field is simply an assembly of
decoupled harmonic oscillators, the same relation holds if Ay and A, are linear functions of
a free field. In particular, we may write

0P L. obpa .. papitbes . ablpipa) (10.61)

Applied to vertex operators, this relation yields

Va(2, 2)Vs(w, @) ~ |z — w|* A9y, 5 (w, @) + - - (10.62)

However, we have seen previously that invariance under the global conformal group
forces the fields within a nonzero two-point function to have the same conformal dimension.
Furthermore, the requirement that the correlation function (V,(z,Z)Vs(w,w)) does not
grow with distance imposes the constraint af < 0, which leaves @« = —f as the only
possibility (g = 1/4m):

Va(2, 2)V_o(w, @) ~ |z —w| 2 + ... (10.63)

In general, the correlator of a string of vertex operators v,, vanishes unless the sum
of the charges vanishes: ) . o; = 0; this will be demonstrated in Chap. 9, in which vertex
operators will be further studied. From now on, the normal ordering of the vertex operator
will not be explicitly written but will always be implicit.
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11 Some more examples

11.1 The Compactified Boson

We already study the free boson at the classical level. One can notice easily that the
scalar is invariant under shift symmetry: ¢ — ¢+ const. So, we can restrict ourselves to the
domain of a circle of radius R, so that ¢ ~ ¢ + 27 R. The modifications from our previous

discussion are:

1. The center of mass momentum 7y must take values that are integer multiples of 1/R
in order for V, to be well-defined.

2. Boundary condition: when we circle once the cylinder, then ¢ winds around its field
configuration m times, i.e. p(z + L,t) = p(z,t) + 2rmR.

So, our field reads

n 27TRm ;
1) = t ( 27mk (z—t)/L _ a_ 2mk(x+t)/L) ’
Qom,n(x ) SOO + 47TgL + L \/H ;) a ke
(11.1)
from which, as before, we can get the holomorphic part of the operator dp(z)
n mR

0 - 11.2
00(:) = (g + 2 ) T4 = S (11.2)

k;«éO

R R
So, letting ag = \/4mg (47:;]% + m2> and ag = /47mg <47:;R — m2>’ we can write
1
i0p(2) = — Y apz"F 7L, (11.3)

this is our Laurent expansion for the primary field dyp.
Then, the stress energy tensor is

T(z) = —2mg : 0p(2)0p(z) = % Z 2T G, = Z 2" 2L, (11.4)

n,me”z nez

where in the last line we just write the Laurent expansion of T'. Equating the last two
lines gives us (similar expression for the anti-holomorphic part)

1
=3 Z DO, (n #0) (11.5)
meZ
1
Lo = Z A—mQm + 5@3. (11.6)
m>0

Therefore, recalling
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4 27 27
= %—gag + T Z (—np + a_pay) = T ag + Z (a—pan + a_pay) (11.7)
n>0 n>0
and from the previous equation,
27 -
H=— (Lo + Lo) (11.8)
Specializing in our case, we have
n mR\ >
Ly = _ 2 —+ — 11.9
0 Za Kk ﬂ-g<47rgR+ 2 > ( )
k>0
- n mR\ >
Ly = a_pa 2 - — 11.10
0 Za KOk + 7T9<47rgR 5 > ( )
k>0
27 o n? 2 p2
H = fz a_kak+a_kak+47rg7RQ+m Rmg | . (11.11)

k>0

If we label our vacuum as |m,n), so that ay |m,n) = ax |m,n) = 0 for k > 0, then

n mR >
Lo |m,n) = 2mg (47rgR + 2> |m,n) = hpypn|m,n), (11.12)
- n mR\? .
Lo|m,n) = 2mng ImgR 2 |m,n) = hpmpn |m,n), (11.13)
7 n’ 2 p2
(L(] + L()) ]’m,n> = W +m“R g = Amm‘ \m,n) s (1114)
(Lo — Lo) |m,n) = nm = sy |m,n), (11.15)

from where we can read out the conformal dimension, the scaling dimension, and the

spin of the vacuum states, respectively.

12 Some more examples

12.1 The Compactified Boson

We already study the free boson at the classical level. One can notice easily that the

scalar is invariant under shift symmetry: ¢ — ¢+ const. So, we can restrict ourselves to the

domain of a circle of radius R, so that ¢ ~ ¢ 4+ 27 R. The modifications from our previous

discussion are:

1) The center of mass momentum 7y must take values that are integer multiples of 1/R
in order for V,, to be well-defined.
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2) Boundary condition: when we circle once the cylinder, then ¢ winds around its field
configuration m times, i.e. p(z+ L,t) = p(z,t) + 2rmR.

So, our field reads

( t) + n ¢4 27rRm Z (a e
€T =

2mik(z—t)/L (—L_ke27rik(ac+t)/L) ’

(12.1)

from which, as before, we can get the holomorphic part of the operator dp(z)

i0p(z) = <47Z]R + m2R> NeT Zakz - (12.2)

R R .
So, letting ag = \/4mg (47:;]% + mQ> and ag = \/47g <47:;R — 7712)’ we can write

1 k-1
Z) = —F—— aipz , 12.3
)= o (12.3)
this is our Laurent expansion for the primary field d¢p.
Then, the stress energy tensor is

T(z) = —27mg : Op(2)0p(z) :

1
=3 Z 2T

n,mez
= Z PR
nel
where in the last line we just write the Laurent expansion if T. Equating the last two lines
gives us (similar expression for the anti-holomorphic part)

:%Z (7 T (n#0)

1
—ag. (12.4)

Lo = Z A—mQm + 5

m>0
Therefore, recalling (10.43), we have
dmg o 27

H=—~ — _ a_na
29La0+ 7 2 (G—nan + a_pay)

2

== ai + ;) (a—pntp + G_pin) (12.5)
n
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and from (12.4)

9 _
H = == (Lo + Lo) (12.6)

Specializing in our case, we have

n mR\?
LO = Za_k(lk + 27Tg (47TgR + 2)

k>0
2
- n mR
Lo=) a_jpa,+2 -
0 Za Kk +2mg (47TgR 2 )
k>0
H 2WZ a_pag + a_pag + "’ +m?R? (12.7)
= — — — T 7T . .
17 2 kQk kG dmgR? g

If we label our vacuum as |m,n), so that ay |m,n) = ax |m,n) = 0 for k > 0, then

n mR

drgR * 2
n mR

drgR 2
n2

47 gR2 *

(Lo — Lo) |m,n) = nm = Smon M, N,

2
Lo |m,n) =2mg < ) |m,n) = hpmpn|m,n),

2
Lo |m,n) = 2ng < ) |m,n) = Bm,n |m,n),

(Lo + Lo) |m,n) = m2R27rg =App|m,n),

from where we can read out the conformal dimension, the scaling dimension, and the spin
of the vacuum states, respectively.

12.2 The Free Fermion

Recall the action

S = g / A2 Ty 9, W, U = (¢, )7 (12.8)

on a cylinder of radius L, we have

_2r 2mika /L
¢<x>—\/L;bke L,

where the operators by, satisfy the anti-commutation relations {by, bq} = dg44,0 (recall that
this theory represents free Majorana fermions). We can see that bg = % It is important

here to distinguish between two boundary conditions:
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Y(x+ L) = ¢(x), Ramond (R),
Y(x+ L) = —¢(z), Neveu-Schwarz (N S). (12.9)

In the (R) sector, k takes integer values, while in the (N S) sector k takes half-integer
ones. To carry the time dependence, as before,

bk(t) _ bk6—27rikt/L

27 —2rk(T—ix
— () = | S b R
k

and the Hamiltonian can be written as

H = Zwkbfkbk + Ey, (12.10)
k>0

2m|k|
L

where wy = . In the (R) sector, there is a zero mode by (recall that b2 = 1/2) that

leads to a degeneracy of the vacuum; namely, the states |0) and by |0) have the same energy
Ey.

12.2.1 Mapping onto the plane

The results we have obtained so far are in the cylinder. Typically, we work on the

plane instead, so it would be nicer to generalize those results for the plane. To do this, we

2rw/L

perform the transformation z — w and we know

2 2 c
Tcyl(z) = (L Z) (Tplane - w)

92 2
Z Z_n_QL%yl = (; Z) (Z Z—n—QLglane B 2422) ’

n

from where we obtain that

vl — pplane _ € 12.11
0 0 24’ ( )
SO
2 [ =nl c
H=Z (L” ane | pplane _ 7) . 12.12
L 0 + 0 12 ( )

In general, Lglane depends on the boundary conditions. So, coming back to our
fermionic example (¢ = 1/2), we use the following results
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1
<T(Z)>plane 16227 (R) (1213)
Thus,
cyl lane 1
Loy = Lg mTL (NS)
1 1
Lcyl _ Lplane 5 = 12.14
0 0 s 1 B ( )

Let’s calculate the quantum Hamiltonian of this model on the plane. As before, we

start by computing T'(2)piane = —7g : ¥(2)09¥(2) :, we can first show that the Laurent
expansion

¢(Z)plane = Z bkzikil/%
k

and so the two sectors can be redefined on the plane

1/)(627riz) — Z bkefZWikefwiZ7k71/2 _ _w(z)’ (R)
keZ

w(eQﬂ'iz) _ Z bke—2m’ke—m'z—k—1/2 _ w(z)7 (NS)
kEZA+1/2

So,

1
T(z)ptane = ”92 (k + 2) a2 by a1
k.q

1
= wgz (/{7 + 2) Zn 2 bn—_1br :,
n7q

which allow us to identify the operators L,,

1
[plane — k+ = :by_gbg:
n WQ;( +2) &0k

absorbing the constant we have

LA — 97g (Z kb_kbk> , keZ+1/2

k>0

1
LPlane _ 9 kb_pbp + — kel
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So the Hamiltonians for each sector are:

27 = 1
H(NS) _ Lplane Lplane 4
(o T 24

2 - 1
H(R) _ fﬂ- (Lglane + Lglane + 12) . (1215)

12.3 The 2d Ising model at criticality
The lattice model

N-1 N
H=-J <Z XnXni1 49 Zn> (12.16)
n=1 n=1

has an exact solution for either Open or Periodic boundary conditions. It’s well-known
that the point g = 1 is a critical point of the system. Following Kogut’s paper [19] (Open
Boundary Conditions), the Hamiltonian can be written as a fermionic one using Jordan-
Wigner transformations. After some algebra, one finds

1
H=-S Al t
a § k"M Mk + const,

where we included the factor of a, the lattice spacing, so that the Hamiltonian has dimen-
sions of energy, we have set J = 1/2, and

Ap = /1 + g2 + 2gcosk,

with {n};,nk/} = 0p - The minimum is located at & = £, so let’s define k = 7 + agq,
where ¢ has units of momentum. Then when we approach the continuum limit, a < 1, we
have

Ar =1+ g2 —2gcos (aq) = /(1 — g)* + g(aq)?,

before sending a to zero, let’s go to the critical point g = 1, we obtain

H = Z |q’n$nq + const,
q

which is the Hamiltonian of a free fermionic model. Furthermore, if we consider our fermions
to be Majorana, namely, 772; = 1)—q, then we recover the free (Majorana) fermion Hamiltonian
that we review in the previous section.

So, the critical point of the 2d Ising model has the same universality class as the free
fermion model, viz. both have central charge ¢ = 1/2 and their set of operators have the

same set of conformal dimensions.
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